| | SLO | ENG | Cookies and privacy

Bigger font | Smaller font

Show document

Title:Šahovski sistem rangiranja za primerjavo evolucijskih algoritmov večkriterijske optimizacije
Authors:ID Ravber, Miha (Author)
ID Črepinšek, Matej (Mentor) More about this mentor... New window
Files:.pdf DOK_Ravber_Miha_2018.pdf (1,54 MB)
MD5: 8FCFFFC763FCBC3B1B14ED18024BEC54
PID: 20.500.12556/dkum/50e7af53-7074-4425-b02c-602cfba11fb2
 
Language:Slovenian
Work type:Doctoral dissertation (mb31)
Typology:2.08 - Doctoral Dissertation
Organization:FERI - Faculty of Electrical Engineering and Computer Science
Abstract:Evolucijski algoritmi večkriterijske optimizacije so bili uspešno uporabljeni za reševanje realnih večkriterijskih problemov, kar pojasnjuje tudi njihovo popularnost. Ocenjevanje in primerjava evolucijski algoritmi večkriterijske optimizacije je pomembno vprašanje. Vendar izvajanje primerjav evolucijskih algoritmov ni trivialna naloga. Algoritmi imajo številne kontrolne parametre, ki jih je potrebno konfigurirati. Izbrati je treba primerne testne probleme in rezultate analizirati z uporabo statistične metode. Poleg tega lahko rezultate evolucijskih algoritmov večkriterijske optimizacije ocenimo z različnimi indikatorji kakovosti, kar še dodatno otežuje primerjavo. Da bi olajšali proces primerjave smo, v doktorski disertaciji predstavili metodo za primerjavo in uglaševanje evolucijskih algoritmov večkriterijske optimizacije. Najprej je bila opravljena analiza indikatorjev kakovosti, ki je pokazala, da lahko z indikatorji, ki merijo enake aspekte kakovosti, dobimo statistično značilne razlike. Dobili smo tudi nabor robustnih in konsistentnih indikatorjev. Za primerjavo algoritmov smo uporabili šahovski sistem rangiranja, ki je bil prilagojen za algoritme večkriterijske optimizacije z ansamblom indikatorjev kakovosti. V ansambel smo vključili najprimernejše indikatorje iz predhodne analize. Rezultati so pokazali, da je predlagana metoda dosegla primerljive rezultate s primerljivimi metodami z manjšim številom zagonov posameznega algoritma. Ker je uspešnost evolucijskih algoritmov lahko zelo odvisna od konfiguracije kontrolnih parametrov, smo predlagano metodo nadgradili tako, da omogoča uglaševanje. Rezultati eksperimenta so pokazali veliko izboljšanje algoritmov po izvedenem uglaševanju s predlagano metodo. Z uporabo uglaševanja zagotovimo, da imajo algoritmi primernejše kontrolne parametre in posledično je tudi primerjava bolj poštena.
Keywords:evolucijski algoritmi, večkriterijska optimizacija, sistem rangiranja, indikatorji kakovosti, uglaševanje parametrov.
Year of publishing:2018
Publisher:M. Ravber
Source:[Maribor
PID:20.500.12556/DKUM-70946 New window
UDC:004.421(043.3)
COBISS.SI-ID:21731606 New window
NUK URN:URN:SI:UM:DK:OXWHOULW
Publication date in DKUM:01.10.2018
Views:1012
Downloads:182
Metadata:XML RDF-CHPDL DC-XML DC-RDF
Categories:KTFMB - FERI
:
Kopiraj citat
  
Average score:(0 votes)
Your score:Voting is allowed only for logged in users.
Share:AddThis
AddThis uses cookies that require your consent. Edit consent...

Hover the mouse pointer over a document title to show the abstract or click on the title to get all document metadata.

Licences

License:CC BY 4.0, Creative Commons Attribution 4.0 International
Link:http://creativecommons.org/licenses/by/4.0/
Description:This is the standard Creative Commons license that gives others maximum freedom to do what they want with the work as long as they credit the author.
Licensing start date:22.06.2018

Secondary language

Language:English
Title:A Chess Rating System for the Comparison of Multi-Objective Evolutionary Algorithms
Abstract:Evolucijski algoritmi večkriterijske optimizacije so bili uspešno uporabljeni za reševanje realnih večkriterijskih problemov, kar pojasnjuje tudi njihovo popularnost. Ocenjevanje in primerjava evolucijski algoritmi večkriterijske optimizacije je pomembno vprašanje. Vendar izvajanje primerjav evolucijskih algoritmov ni trivialna naloga. Algoritmi imajo številne kontrolne parametre, ki jih je potrebno konfigurirati. Izbrati je treba primerne testne probleme in rezultate analizirati z uporabo statistične metode. Poleg tega lahko rezultate evolucijskih algoritmov večkriterijske optimizacije ocenimo z različnimi indikatorji kakovosti, kar še dodatno otežuje primerjavo. Da bi olajšali proces primerjave smo, v doktorski disertaciji predstavili metodo za primerjavo in uglaševanje evolucijskih algoritmov večkriterijske optimizacije. Najprej je bila opravljena analiza indikatorjev kakovosti, ki je pokazala, da lahko z indikatorji, ki merijo enake aspekte kakovosti, dobimo statistično značilne razlike. Dobili smo tudi nabor robustnih in konsistentnih indikatorjev. Za primerjavo algoritmov smo uporabili šahovski sistem rangiranja, ki je bil prilagojen za algoritme večkriterijske optimizacije z ansamblom indikatorjev kakovosti. V ansambel smo vključili najprimernejše indikatorje iz predhodne analize. Rezultati so pokazali, da je predlagana metoda dosegla primerljive rezultate s primerljivimi metodami z manjšim številom zagonov posameznega algoritma. Ker je uspešnost evolucijskih algoritmov lahko zelo odvisna od konfiguracije kontrolnih parametrov, smo predlagano metodo nadgradili tako, da omogoča uglaševanje. Rezultati eksperimenta so pokazali veliko izboljšanje algoritmov po izvedenem uglaševanju s predlagano metodo. Z uporabo uglaševanja zagotovimo, da imajo algoritmi primernejše kontrolne parametre in posledično je tudi primerjava bolj poštena
Keywords:evolutionary algorithms, multi-objective optimization, rating system, quality indicators, parameter tuning.


Comments

Leave comment

You must log in to leave a comment.

Comments (0)
0 - 0 / 0
 
There are no comments!

Back
Logos of partners University of Maribor University of Ljubljana University of Primorska University of Nova Gorica