| | SLO | ENG | Cookies and privacy

Bigger font | Smaller font

Show document Help

Title:Prediction of California Bearing Ratio (CBR) and Compaction Characteristics of granular soil
Authors:ID Rehman, Attique ul (Author)
ID Farooq, Khalid (Author)
ID Mujtaba, Hassan (Author)
ID Fakulteta za gradbeništvo, prometno inženirstvo in arhitekturo Univerze v Mariboru (Copyright holder)
Files:.pdf Acta_Geotechnica_Slovenica_2017_Rehman,_Farooq,_Mujtaba_Prediction_of_California_Bearing_Ratio_(CBR)_and_Compaction_Characteristics_of_g_unlocked.pdf (830,76 KB)
MD5: 37B5F10E06D7BBF3102EEEB739352ED8
PID: 20.500.12556/dkum/6d54674c-553e-45d3-b484-30e17345c007
 
URL http://fgserver3.fg.um.si/journal-ags/2017-1/article-6.asp
 
Language:English
Work type:Scientific work
Typology:1.01 - Original Scientific Article
Organization:FGPA - Faculty of Civil Engineering, Transportation Engineering and Architecture
Abstract:This research is an effort to correlate the index properties of granular soils with the California Bearing Ratio (CBR) and the compaction characteristics. Soil classification, modified proctor and CBR tests conforming to the relevant ASTM methods were performed on natural as well as composite sand samples. The laboratory test results indicated that samples used in this research lie in SW, SP and SP-SM categories based on Unified Soil Classification System and in groups A-1-b and A-3 based on the AASHTO classification system. Multiple linear regression analysis was performed on experimental data and correlations were developed to predict the CBR, maximum dry density (MDD) and optimum moisture content (OMC) in terms of the index properties of the samples. Among the various parameters, the coefficient of uniformity (Cu), the grain size corresponding to 30% passing (D30) and the mean grain size (D50) were found to be the most effective predictors. The proposed prediction models were duly validated using an independent dataset of CBR tests on sandy soils. The comparative results showed that the variation between the experimental and predicted results for CBR falls within ±4% confidence interval and that of the maximum dry density and the optimum moisture content are within ±2%. Based on the correlations developed for CBR, MDD and OMC, predictive curves are proposed for a quick estimation based on Cu , D30 and D50. The proposed models and the predictive curves for the estimation of the CBR value and the compaction characteristics would be very useful in geotechnical & pavement engineering without performing the laboratory compaction and CBR tests.
Keywords:CBR, regression, model, prediction, compaction characteristics
Publication status:Published
Publication version:Version of Record
Year of publishing:2017
Number of pages:str. 63-72
Numbering:Letn. 14, št. 1
PID:20.500.12556/DKUM-70887 New window
ISSN:1854-0171
ISSN on article:1854-0171
COBISS.SI-ID:302986752 New window
NUK URN:URN:SI:UM:DK:PKRK054J
Copyright:Fakulteta za gradbeništvo, prometno inženirstvo in arhitekturo Univerze v Mariboru
Publication date in DKUM:18.06.2018
Views:1439
Downloads:227
Metadata:XML DC-XML DC-RDF
Categories:Misc.
:
Copy citation
  
Average score:(0 votes)
Your score:Voting is allowed only for logged in users.
Share:Bookmark and Share


Hover the mouse pointer over a document title to show the abstract or click on the title to get all document metadata.

Record is a part of a journal

Title:Acta geotechnica Slovenica
Shortened title:Acta geotech. Slov.
Publisher:Fakulteta za gradbeništvo, prometno inženirstvo in arhitekturo Univerze v Mariboru
ISSN:1854-0171
COBISS.SI-ID:215987712 New window

Secondary language

Language:Slovenian
Title:Napoved kalifornijskega indeksa nosilnosti (CBR) in lastnosti zgostitve zrnatih zemljin
Abstract:V pričujoči študiji je podan poskus korelacije indeksnih lastnosti zrnatih zemljin s kalifornijskim indeksom nosilnosti (CBR) in lastnosti zgostitve. Na naravnih in kompozitnih vzorcih peskov so bile skladno z ASTM metodami izvedene klasifikacija zemljin, modificirani Proctorjev preizkus in CBR preizkus. Rezultati laboratorijskih preiskav so pokazali, da vzorci v študiji spadajo med kategorije SW, SP in SP-SM, skladno s sistemom enotne klasifikacije zemljin in v skupini A-1-b in A-3, skladno z AASHTO klasifikacijskim sistemom. Na podatkih eksperimentov je bila izvedena multipla linearna regresijska analiza in razvite korelacije za napoved CBR, maksimalne suhe gostote in optimalne vlažnosti glede na indeksne lastnosti vzorcev. Med različnimi parametri so se za napovedovanje izkazali za najboljše koeficient enakomernosti (Cu), velikost zrn pri 30 % presejku (D30) in pri 50 % presejku (D50). Predlagani modeli za napoved zgornjih lastnosti so bili potrjeni na bazi neodvisnih podatkov CBR preizkusov peščenih zemljin. Primerjalni rezultati kažejo, da je variacija med eksperimentalnimi in napovedanimi rezultati za CBR znotraj ±4 % intervala zaupanja, in za maksimalno suho gostoto ter optimalno vlažnost znotraj ±2 %. Na osnovi korelacij, razvitih za CBR, maksimalno suho gostoto in optimalno vlažnost, so predlagane napovedovalne krivulje za hitro oceno teh lastnosti na osnovi Cu, D30 in D50. Predlagani modeli in napovedovalne krivulje za oceno CBR vrednosti in lastnosti zgostitve so lahko zelo uporabni v geotehničnem inženirstvu in dimenzioniranju voziščnih konstrukcij, ne da bi izvedli laboratorijske preiskave zgostitve in CBR preizkuse.
Keywords:CBR, regresija, model, napoved, karakteristike zgostitve


Collection

This document is a part of these collections:
  1. Acta geotechnica Slovenica

Comments

Leave comment

You must log in to leave a comment.

Comments (0)
0 - 0 / 0
 
There are no comments!

Back
Logos of partners University of Maribor University of Ljubljana University of Primorska University of Nova Gorica