| | SLO | ENG | Cookies and privacy

Bigger font | Smaller font

Show document Help

Title:Determining the grain size distribution of granular soils using image analysis
Authors:ID Dipova, Nihat (Author)
ID Fakulteta za gradbeništvo, prometno inženirstvo in arhitekturo Univerze v Mariboru (Copyright holder)
Files:.pdf Acta_Geotechnica_Slovenica_2017_Dipova_Determining_the_grain_size_distribution_of_granular_soils_using_image_analysis.pdf (1,27 MB)
MD5: 2FEF44BB9FA5C564EAA75440D1E8E3CA
PID: 20.500.12556/dkum/0e414a97-4d30-48ec-b507-47e025e55abb
 
URL http://fgserver3.fg.um.si/journal-ags/2017-1/article-3.asp
 
Language:English
Work type:Scientific work
Typology:1.01 - Original Scientific Article
Organization:FGPA - Faculty of Civil Engineering, Transportation Engineering and Architecture
Abstract:Image-processing technology includes storing the images of objects in a computer and processing them with the computer for a specified purpose. Image analysis is the numerical expression of the images of objects by means of mimicking the functioning of the human visual system and the generation of numerical data for calculations that will be made later. Digital image analysis provides the capability for rapid measurement, which can be made in near-real time, for numerous engineering parameters of materials. Recently, image analysis has been used in geotechnical engineering practices. Grain size distribution and grain shape are the most fundamental properties used to interpret the origin and behaviour of soils. Mechanical sieving has some limitations, e.g., it does not measure the axial dimension of a particle, particle shape is not taken into consideration, and especially for elongated and flat particles a sieve analysis will not yield a reliable measure. In this study the grain size distribution of sands has been determined following image-analysis techniques, using simple apparatus, non-professional cameras and open-code software. The sample is put on a transparent plate that is illuminated with a white backlight. The digital images were acquired with a CCD DSLR camera. The segmentation of the particles is achieved by image thresholding, binary coding and particle labeling. The geometrical measurements of each particle are obtained using an automated pixel-counting technique. Local contacts or limited overlaps were overcome using a watershed split. The same sample was tested by traditional sieve analysis. An image-analysis-based grain size distribution has been compared with a sieve-analysis distribution. The results show that the grain size distribution of the image-based analysis and the sieve analysis are in good agreement.
Keywords:image analysis, image processing, grain size, sand
Publication status:Published
Publication version:Version of Record
Year of publishing:2017
Number of pages:str. 29-37
Numbering:Letn. 14, št. 1
PID:20.500.12556/DKUM-70883 New window
ISSN:1854-0171
ISSN on article:1854-0171
COBISS.SI-ID:302975232 New window
NUK URN:URN:SI:UM:DK:FMVIM7NZ
Copyright:Fakulteta za gradbeništvo, prometno inženirstvo in arhitekturo Univerze v Mariboru
Publication date in DKUM:18.06.2018
Views:1533
Downloads:160
Metadata:XML DC-XML DC-RDF
Categories:Misc.
:
Copy citation
  
Average score:(0 votes)
Your score:Voting is allowed only for logged in users.
Share:Bookmark and Share


Hover the mouse pointer over a document title to show the abstract or click on the title to get all document metadata.

Record is a part of a journal

Title:Acta geotechnica Slovenica
Shortened title:Acta geotech. Slov.
Publisher:Fakulteta za gradbeništvo, prometno inženirstvo in arhitekturo Univerze v Mariboru
ISSN:1854-0171
COBISS.SI-ID:215987712 New window

Secondary language

Language:Slovenian
Title:Določanje krivulje zrnavosti nevezljivih zemljin z uporabo slikovne analize
Abstract:Tehnologija obdelave slik vključuje shranjevanje slik predmetov na računalnik in njihovo obdelavo z računalnikom za določen namen. Slikovna analiza je številčni izraz slikovne podobe predmetov s posnemanjem delovanja človeškega očesa in ustvarjanje številčnih podatkov za izračune, ki bodo izvedeni kasneje. Digitalna slikovna analiza zagotavlja možnost za hitro merjenje, za številne parametre inženirskih materialov lahko takšno merjenje zagotovimo v skoraj realnem času. Slikovna analiza se v geotehnični inženirski praksi uporablja šele kratek čas. Krivulja zrnavosti in oblika zrn sta temeljni lastnosti, ki se uporabljata za razlago izvora in obnašanja zemljin. Mehansko sejanje ima nekatere omejitve, npr.: ne meri se osna dimenzija delca, ni upoštevana oblika delcev, in zlasti za podolgovate in ploščate delce s sejalno analizo ne dobimo zanesljivih razmerij zrnavosti. V tej študiji je bila porazdelitev velikosti zrn peska določena z uporabo tehnike slikovne analize, uporabljeni so bili preprost aparat, neprofesionalne kamere in odprto-kodna programska oprema. Analiza se izvede tako, da se vzorec postavi na pregledno ploščo, ki je z ozadja osvetljena z belo osvetlitvijo. Digitalne slike se dobijo s pomočjo CCD DSLR kamere. Segmentacija delcev se dobi z nastavljanjem pragov slike, binarno kodo in označevanjem delcev, geometrijske meritve posameznega delca pa z uporabo avtomatizirane tehnike štetja slikovnih pik. Lokalni stiki ali omejeno prekrivanje so bili premagani s pomočjo transformacijske tehnike ločevanja. Isti vzorec je bil testiran s tradicionalno sejalno analizo. Primerjave rezultatov kažejo, da se krivulji zrnavosti dobljeni s slikovno in sejalno analiza dobro ujemata.
Keywords:slikovna analiza, obdelava slike, velikost zrna, pesek


Collection

This document is a part of these collections:
  1. Acta geotechnica Slovenica

Comments

Leave comment

You must log in to leave a comment.

Comments (0)
0 - 0 / 0
 
There are no comments!

Back
Logos of partners University of Maribor University of Ljubljana University of Primorska University of Nova Gorica