| | SLO | ENG | Cookies and privacy

Bigger font | Smaller font

Show document

Title:Bayesovi pristopi ocenjevanja dinamičnih sistemov za potrebe napovedovanja dinamike pretovora pristanišč
Authors:Intihar, Marko (Author)
Dragan, Dejan (Mentor) More about this mentor... New window
Kramberger, Tomaž (Co-mentor)
Files:.pdf DOK_Intihar_Marko_2019.pdf (3,26 MB)
 
Language:Slovenian
Work type:Dissertation (m)
Typology:2.08 - Doctoral Dissertation
Organization:FL - Faculty of Logistic
Abstract:Napovedovanje še nerealiziranih dogodkov kot je na primer prediktivna analitika povpraševanja po količini blaga oz. storitev, je današnja vsakdanja praksa za večino subjektov industrije. Pristaniška dejavnost tukaj ni izjema, saj je potrebno zagotavljati kvalitetne napovedi bodočega pretovora pristanišč, ki so osnova za uspešno planiranje pristaniških dejavnosti. V doktorski disertaciji je prikazan algoritem, ki združuje izbrano paleto paradigm iz področja statistike in ekonometrije, z namenom zagotavljanja natančnih napovedi bodoče dinamike pristaniškega tovora. Ideja algoritma temelji na modeliranju časovne vrste izhoda ob upoštevanju izbranih vhodov, ki jih sestavljajo ustrezni ekonomski kazalniki. Le ti so predhodnje izbrani s selekcijsko proceduro in predimenzionirani z namenom zmanjševanja računske kompleksnosti in ohranjanja koristnih informacij osnovnih časovnih vrst. Algoritem kombinira MC simulacijo za selekcijo osnovnega nabora kazalnikov, ter izračun dinamičnih faktorskih modelov z uporabo EM algoritma in Kalmanovega filtra. Ti modeli se uporabljajo kot vhodi v ARIMAX modele časovne vrste opazovanega procesa. Celotni mehanizem pa povezuje pet-fazna procedura, ki preigrava različne strukture kandidatov ARIMAX modelov, in na koncu izbere enega kandidata za izbrani pretovor pristanišča. Končni kandidat je robusten in izpolnjuje temeljne statistično-ekonometrične teste, ter je predvsem zmožen zagotavljati zadovoljivo natančne napovedi. Dani algoritem je bil apliciran na realne podatke izbranega pristanišča. Nato smo izvedli komparativno analizo, v kateri dobljene rezultate primerjamo z napovedmi nekaterih standardnih modelov časovnih vrst. Analiza razkriva uporabnost apliciranega algoritma in nakazuje na koristno uporabo v praksi.
Keywords:Pretovor pristanišč, časovne vrste, prediktivna analitika, MC simulacija, Dinamična faktorska analiza, EM algoritem, Box-Jenkins modeli, makroekonomski indikatorji
Year of publishing:2018
Publisher:[M. Intihar]
Source:Ljubljana
UDC:519.2
COBISS_ID:512984637 Link is opened in a new window
NUK URN:URN:SI:UM:DK:KBZVFFTR
License:CC BY-NC-ND 4.0
This work is available under this license: Creative Commons Attribution Non-Commercial No Derivatives 4.0 International
Views:381
Downloads:65
Metadata:XML RDF-CHPDL DC-XML DC-RDF
Categories:FL
:
  
Average score:(0 votes)
Your score:Voting is allowed only for logged in users.
Share:AddThis
AddThis uses cookies that require your consent. Edit consent...

Hover the mouse pointer over a document title to show the abstract or click on the title to get all document metadata.

Secondary language

Language:English
Title:Bayesian methods for estimating parameters of dynamic systems used for port's throughput forecasting
Abstract:Future events forecasting such as a prediction of demand is nowadays an industry standard. Maritime industry is not an exception since the quality of forecasting of a future port's throughput dynamics is the baseline for port task planning. In our work, an algorithm, which combines several fields of statistics and econometrics, is presented. Algorithm's primary goal is to provide fairly accurate future port's throughput predictions. The idea stands on modeling the output time series concerning the selected inputs. Latter are presented in the form of macroeconomic indicators, which are a priori selected from a bigger set of indicators. For this purpose, an initial data reduction of exogenous indicators has been conducted by regressing different combination of subsets of exogenous indicators randomly chosen in the Monte Carlo procedure, where the optimal set of genuinely influential indicators was chosen by observing the model’s error-based criteria adopted in the multiple regression static procedure. In the next stage, the reduced set of influential indicators is aggregated into dynamic factor models using the EM algorithm and Kalman filter. Derived dynamic factors are used as inputs into the ARIMAX time series models. Complete mechanism is executed based on five-step heuristic procedure, where generating different ARIMAX candidates eventually leads to the selection of the final best candidate. The obtained ARIMAX model is robust, complies with adequate statistical and econometrics tests, and last, but not least it can provide quite accurate forecasts. The algorithm has been applied to the real port's data. Achieved ARIMAX predictions of the throughput data values were compared with the standard benchmarking models’ predictions, whereas the results are promising and reveal a high level of applicability.
Keywords:Port throughput, time series, predictive analytics, MC simulation, Dynamic factor analysis, EM algorithm, Box-Jenkins models, macroeconomic indicators


Comments

Leave comment

You have to log in to leave a comment.

Comments (0)
0 - 0 / 0
 
There are no comments!

Back
Logos of partners University of Maribor University of Ljubljana University of Primorska University of Nova Gorica