| | SLO | ENG | Cookies and privacy

Bigger font | Smaller font

Show document

Title:Multi-objective optimization algorithms with the island metaheuristic for effective project management problem solving
Authors:ID Brester, Christina (Author)
ID Ryzhikov, Ivan (Author)
ID Semenkin, Eugene (Author)
Files:.pdf Organizacija_2017_Brester,_Ryzhikov,_Semenkin_Multi-objective_Optimization_Algorithms_with_the_Island_Metaheuristic_for_Effective_Projec.pdf (993,98 KB)
MD5: 326C88C4FEF4CDEEEEBD6979FFDF8C71
PID: 20.500.12556/dkum/ed42e923-1cd2-48d2-9869-b765cdb4ec11
 
URL https://www.degruyter.com/view/j/orga.2017.50.issue-4/orga-2017-0027/orga-2017-0027.xml
 
Language:English
Work type:Scientific work (r2)
Typology:1.01 - Original Scientific Article
Organization:FOV - Faculty of Organizational Sciences in Kranj
Abstract:Background and Purpose: In every organization, project management raises many different decision-making problems, a large proportion of which can be efficiently solved using specific decision-making support systems. Yet such kinds of problems are always a challenge since there is no time-efficient or computationally efficient algorithm to solve them as a result of their complexity. In this study, we consider the problem of optimal financial investment. In our solution, we take into account the following organizational resource and project characteristics: profits, costs and risks. Design/Methodology/Approach: The decision-making problem is reduced to a multi-criteria 0-1 knapsack problem. This implies that we need to find a non-dominated set of alternative solutions, which are a trade-off between maximizing incomes and minimizing risks. At the same time, alternatives must satisfy constraints. This leads to a constrained two-criterion optimization problem in the Boolean space. To cope with the peculiarities and high complexity of the problem, evolution-based algorithms with an island meta-heuristic are applied as an alternative to conventional techniques. Results: The problem in hand was reduced to a two-criterion unconstrained extreme problem and solved with different evolution-based multi-objective optimization heuristics. Next, we applied a proposed meta-heuristic combining the particular algorithms and causing their interaction in a cooperative and collaborative way. The obtained results showed that the island heuristic outperformed the original ones based on the values of a specific metric, thus showing the representativeness of Pareto front approximations. Having more representative approximations, decision-makers have more alternative project portfolios corresponding to different risk and profit estimations. Since these criteria are conflicting, when choosing an alternative with an estimated high profit, decision-makers follow a strategy with an estimated high risk and vice versa. Conclusion: In the present paper, the project portfolio decision-making problem was reduced to a 0-1 knapsack constrained multi-objective optimization problem. The algorithm investigation confirms that the use of the island meta-heuristic significantly improves the performance of genetic algorithms, thereby providing an efficient tool for Financial Responsibility Centres Management.
Keywords:0-1 multi-objective constrained knapsack problem, project management portfolio problem, multi-objective evolution-based optimization algorithms, collaborative and cooperative meta-heuristics
Year of publishing:2017
Publication status in journal:Published
Article version:Publisher's version of article
Number of pages:str. 364-373
Numbering:Letn. 50, št. 4
PID:20.500.12556/DKUM-70350 New window
ISSN:1581-1832
ISSN on article:1581-1832
DOI:10.1515/orga-2017-0027 New window
NUK URN:URN:SI:UM:DK:DGQWIBIB
Publication date in DKUM:04.05.2018
Views:1064
Downloads:260
Metadata:XML RDF-CHPDL DC-XML DC-RDF
Categories:Misc.
:
Kopiraj citat
  
Average score:(0 votes)
Your score:Voting is allowed only for logged in users.
Share:AddThis
AddThis uses cookies that require your consent. Edit consent...

Hover the mouse pointer over a document title to show the abstract or click on the title to get all document metadata.

Record is a part of a journal

Title:Organizacija
Publisher:Fakulteta za organizacijske vede Univerze v Mariboru, De Gruyter Open
ISSN:1581-1832
COBISS.SI-ID:251341568 New window

Licences

License:CC BY-NC-ND 4.0, Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International
Link:http://creativecommons.org/licenses/by-nc-nd/4.0/
Description:The most restrictive Creative Commons license. This only allows people to download and share the work for no commercial gain and for no other purposes.
Licensing start date:04.05.2018

Secondary language

Language:Slovenian
Title:Algoritmi za optimizacijo več ciljev z metaheuristiko otoka za učinkovito reševanje problema vodenja projektov
Abstract:Ozadje in namen: V vsaki organizaciji vodenje projektov odpira številne in različne probleme odločanja, katerih velik del je mogoče učinkovito rešiti s pomočjo posebnih sistemov za podporo odločanju. Takšni problemi vedno predstavljajo izziv, saj za njihovo kompleksnost ni časovno ali računsko učinkovitega algoritma. V članku obravnavamo problem optimalnih finančnih naložb. V naši rešitvi upoštevamo naslednje organizacijske vire in značilnosti projekta: dobiček, stroške in tveganja. Zasnova / metodologija / pristop: Problem odločanja je formuliran kot večkriterialni problem 0-1 nahrbtnika. To pomeni, da moramo poiskati nedominantno množico alternativnih rešitev kot kompromis med maksimiranjem dohodkov in zmanjševanjem tveganj. Obenem pa morajo alternative zadoščati omejitvam. To vodi k omejenemu problemu dvokriterialne optimizacije v Boolovem prostoru. Da bi obvladali posebnostmi in visoko zapletenost problema, smo kot alternativo običajnim tehnikam uporabili evolucijske algoritme z meta-hevristiko otoka. Rezultati: Problem smo formulirali kot neomejeno dvokriterijsko optimizacijo in ga rešili z različnimi heurističnimi optimizacijami, ki temeljijo na evoluciji. Nato smo predlagali meta-hevristiko, ki združuje specifične algoritme in dosega njihovo interakcijo na sodelovalni način. Dobljeni rezultati so pokazali, da je hevristika otoka presegla rezultate, dobljene na podlagi vrednosti specifične metrike, s čimer se je pokazala reprezentativnost Paretovih prednjih aproksimacij. Bolj reprezentativni približki omogočajo nosilcem odločanja več alternativnih projektnih portfeljev, ki ustrezajo različnim ocenam tveganja in dobička. Ker so ti kriteriji v nasprotju, pri izbiri alternative z ocenjenim visokim dobičkom nosilci odločanja sledijo strategiji z ocenjenim tveganjem in obratno. Zaključek: V članku smo problem reševanja portfeljev projektov formulirali kot problem večciljne optimizacije 0-1 nahrbtnika z omejitvami. Analiza algoritma potrjuje, da uporaba meta-hevristike otoka bistveno izboljšala učinkovitost genetskih algoritmov in tako predstavlja učinkovito orodje za upravljanje centrov za finančno odgovornost.
Keywords:večkriterialni problem 0-1 nahrbtnika, problem portfelja projektov, večciljni evolucijski algoritmi za optimizacijo, sodelovalna meta-hevristika


Collection

This document is a part of these collections:
  1. Organizacija

Comments

Leave comment

You must log in to leave a comment.

Comments (0)
0 - 0 / 0
 
There are no comments!

Back
Logos of partners University of Maribor University of Ljubljana University of Primorska University of Nova Gorica