| | SLO | ENG | Cookies and privacy

Bigger font | Smaller font

Show document Help

Title:The accuracy of the germination rate of seeds based on image processing and artificial neural networks
Authors:ID Škrubej, Uroš (Author)
ID Rozman, Črtomir (Author)
ID Stajnko, Denis (Author)
Files:.pdf Agricultura_2015_Skrubej,_Rozman,_Stajnko_The_accuracy_of_the_germination_rate_of_seeds_based_on_image_processing_and_artificial_neural.pdf (353,43 KB)
MD5: 58852E46FCAEACDCD25118BE522DAA41
PID: 20.500.12556/dkum/f3a4fb9f-929f-46f0-a765-f52c91759b2d
 
URL https://www.degruyter.com/view/j/agricultura.2015.12.issue-1-2/agricultura-2016-0003/agricultura-2016-0003.xml
 
Language:English
Work type:Scientific work
Typology:1.01 - Original Scientific Article
Organization:FKBV - Faculty of Agriculture and Life Sciences
Abstract:This paper describes a computer vision system based on image processing and machine learning techniques which was implemented for automatic assessment of the tomato seed germination rate. The entire system was built using open source applications Image J, Weka and their public Java classes and linked by our specially developed code. After object detection, we applied artificial neural networks (ANN), which was able to correctly classify 95.44% of germinated seeds of tomato (Solanum lycopersicum L.).
Keywords:image processing, artificial neural networks, seeds, tomato
Publication status:Published
Publication version:Version of Record
Year of publishing:2015
Number of pages:str. 19-24
Numbering:Letn. 12, št. 1/2
PID:20.500.12556/DKUM-68970 New window
ISSN:1580-8432
UDC:004.9:631.547.1
ISSN on article:1580-8432
COBISS.SI-ID:4129068 New window
DOI:10.1515/agricultura-2016-0003 New window
NUK URN:URN:SI:UM:DK:4ZTRS3HE
Publication date in DKUM:14.11.2017
Views:1445
Downloads:444
Metadata:XML RDF-CHPDL DC-XML DC-RDF
Categories:Misc.
:
Copy citation
  
Average score:(0 votes)
Your score:Voting is allowed only for logged in users.
Share:Bookmark and Share


Hover the mouse pointer over a document title to show the abstract or click on the title to get all document metadata.

Record is a part of a journal

Title:Agricultura
Publisher:Fakulteta za kmetijstvo in biosistemske vede Univerze v Mariboru, Sciendo
ISSN:1580-8432
COBISS.SI-ID:116855808 New window

Licences

License:CC BY-NC-ND 4.0, Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International
Link:http://creativecommons.org/licenses/by-nc-nd/4.0/
Description:The most restrictive Creative Commons license. This only allows people to download and share the work for no commercial gain and for no other purposes.
Licensing start date:14.11.2017

Secondary language

Language:Slovenian
Title:Natančnost določanja kalečih semen s pomočjo obdelave slik in nevronskih mrež
Abstract:Članek opisuje sistem računalniškega vida, ki temelji na tehnikah obdelave slik in strojnega učenja, ki je bil izdelan za avtomatsko oceno stopnje kaljenja semen paradižnika. Celoten sistem je bil zgrajen s pomočjo odprtokodnih aplikacij ImageJ, Weka in njihovih javno dostopnih javanskih kod, ki smo jih povezali v lastno originalno razvito kodo. Po odkrivanju predmetov na RGB slikah, smo uporabili umetne nevronske mreže (ANN), ki so bile sposobne pravilno razvrstiti 95,44% nakaljenih semen paradižnika (Solanum lycopersicum L.).
Keywords:obdelava slik, umetne nevronske mreže, semena, paradižnik


Collection

This document is a part of these collections:
  1. Agricultura

Comments

Leave comment

You must log in to leave a comment.

Comments (0)
0 - 0 / 0
 
There are no comments!

Back
Logos of partners University of Maribor University of Ljubljana University of Primorska University of Nova Gorica