SLO | ENG | Piškotki in zasebnost

Večja pisava | Manjša pisava

Izpis gradiva

Naslov:New perspectives for computer-aided discrimination of Parkinson's disease and essential tremor
Avtorji:Povalej, Petra (Avtor)
Gallego, J.A. (Avtor)
Romero, J. P. (Avtor)
Glaser, Vojko (Avtor)
Rocon, E. (Avtor)
Benito-León, Julián (Avtor)
Bermejo-Pareja, Félix (Avtor)
Posada, Ignacio (Avtor)
Holobar, Aleš (Avtor)
Datoteke:.pdf Complexity_2017_Povalej_Brzan_et_al._New_Perspectives_for_Computer-Aided_Discrimination_of_Parkinson’s_Disease_and_Essential_Tremor.pdf (3,31 MB)
 
URL https://www.hindawi.com/journals/complexity/2017/4327175/
 
Jezik:Angleški jezik
Vrsta gradiva:Znanstveno delo (r2)
Tipologija:1.01 - Izvirni znanstveni članek
Organizacija:FERI - Fakulteta za elektrotehniko, računalništvo in informatiko
Opis:Pathological tremor is a common but highly complex movement disorder, affecting ~5% of population older than 65 years. Different methodologies have been proposed for its quantification. Nevertheless, the discrimination between Parkinson's disease tremor and essential tremor remains a daunting clinical challenge, greatly impacting patient treatment and basic research. Here, we propose and compare several movement-based and electromyography-based tremor quantification metrics. For the latter, we identified individual motor unit discharge patterns from high-density surface electromyograms and characterized the neural drive to a single muscle and how it relates to other affected muscles in 27 Parkinson's disease and 27 essential tremor patients. We also computed several metrics from the literature. The most discriminative metrics were the symmetry of the neural drive to muscles, motor unit synchronization, and the mean log power of the tremor harmonics in movement recordings. Noteworthily, the first two most discriminative metrics were proposed in this study. We then used decision tree modelling to find the most discriminative combinations of individual metrics, which increased the accuracy of tremor type discrimination to 94%. In summary, the proposed neural drive-based metrics were the most accurate at discriminating and characterizing the two most common pathological tremor types.
Ključne besede:Parkinson's disease, essential tremor, electromyography, wrist movements, motor units, muscular excitation, decision tree
Leto izida:2017
Št. strani:str. 1-17
Številčenje:št. 4327175, Letn. 2017
ISSN:1099-0526
UDK:616.858:004
COBISS_ID:2368420 Povezava se odpre v novem oknu
DOI:10.1155/2017/4327175 Povezava se odpre v novem oknu
ISSN pri članku:1099-0526
Licenca:CC BY 4.0
To delo je dosegljivo pod licenco Creative Commons Priznanje avtorstva 4.0 Mednarodna
Število ogledov:196
Število prenosov:19
Metapodatki:XML RDF-CHPDL DC-XML DC-RDF
Področja:Ostalo
:
  
Skupna ocena:(0 glasov)
Vaša ocena:Ocenjevanje je dovoljeno samo prijavljenim uporabnikom.
Objavi na:AddThis
AddThis uporablja piškotke, za katere potrebujemo vaše privoljenje.
Uredi privoljenje...

Postavite miškin kazalec na naslov za izpis povzetka. Klik na naslov izpiše podrobnosti ali sproži prenos.

Gradivo je del revije

Naslov:Complexity
Založnik:Hindawi Publishing Corporation
ISSN:1099-0526
COBISS.SI-ID:18282279 Novo okno

Gradivo je financirano iz projekta

Financer:EC - Evropska skupnost (EC)
Program financ.:FP7 - 7-th Framework Programme for Research and Technological Development
Številka projekta:287739
Naslov:A novel concept for support to diagnosis and remote management of tremor
Akronim:NeuroTREMOR
ID projekta:info:eu-repo/grantAgreement/EC/FP7/287739

Sekundarni jezik

Jezik:Slovenski jezik
Ključne besede:Parkinsonizem, esencialni tremor, elektromiografija, premiki zapestja, motorične enote, mišično vzbujanje, odločitveno drevo


Komentarji

Dodaj komentar

Za komentiranje se morate prijaviti.

Komentarji (0)
0 - 0 / 0
 
Ni komentarjev!

Nazaj
Logotipi partnerjev Univerza v Mariboru Univerza v Ljubljani Univerza na Primorskem Univerza v Novi Gorici