| | SLO | ENG | Cookies and privacy

Bigger font | Smaller font

Show document Help

Title:Obvladovanje tveganj pri »peer to peer« posojilih
Authors:ID Blagotinšek, Andrej (Author)
ID Mlinarič, Franjo (Mentor) More about this mentor... New window
ID Jagrič, Timotej (Comentor)
Files:.pdf MAG_Blagotinsek_Andrej_2017.pdf (1,56 MB)
MD5: E6D84281A9E277EF5E2FCB788D5FC947
PID: 20.500.12556/dkum/08808f2e-31fa-464c-b291-a51f54c0eb74
 
Language:Slovenian
Work type:Master's thesis/paper
Typology:2.09 - Master's Thesis
Organization:EPF - Faculty of Business and Economics
Abstract:Nove digitalne tehnologije botrujejo procesu preoblikovanja obstoječih vrednostih verig finančnih produktov oz. storitev. »P2P« posojila so nov in inovativen način tako investiranja presežkov finančnih sredstev kot tudi prejemanja finančnega kapitala. Število tovrstnih posojil konstantno raste, vendar posojilodajalci niso profesionalni investitorji. Posojilodajalci prevzemajo veliko tveganje, saj so »P2P« posojila izdana brez zavarovanja. V ta namen »P2P« platforme izdajajo historične podatke o posojilojemalcih. V delu se osredotočamo na identifikacijo tveganj, ki so prisotna pri tovrstnem investiranju in na napovedovanje možnosti neplačil posojil. Empirična študija analizira podatke pridobljene iz platforme Bondora (N=1823) od leta 2009 do 2015. Opravili smo statistično analizo spremenljivk. Razvili smo Logit model za napovedovanje neplačil. Kakovost modela smo preverjali z ROC krivuljo, optimizacijo modela pa na osnovi uravnoteženja klasifikacijske natančnosti, kjer smo dololčili optimalno presečno vrednost. Rezultati so pokazali, da kreditni model za napovedovanje neplačil zmanjšuje verjetnost finančne izgube pri »P2P« investiranju.
Keywords:kreditno tveganje, verjetnost neplačila, »P2P« posojila, LOGIT model, obvladovanje tveganj, C25 Discrete Regression and Qualitative Choice Models, G21 Banks, G17, Financial Forecasting and Simulation
Place of publishing:Maribor
Publisher:[A. Blagotinšek]
Year of publishing:2017
PID:20.500.12556/DKUM-67662 New window
UDC:336.77
COBISS.SI-ID:12842524 New window
NUK URN:URN:SI:UM:DK:DELYDU1F
Publication date in DKUM:27.10.2017
Views:2426
Downloads:338
Metadata:XML DC-XML DC-RDF
Categories:EPF
:
Copy citation
  
Average score:(0 votes)
Your score:Voting is allowed only for logged in users.
Share:Bookmark and Share


Hover the mouse pointer over a document title to show the abstract or click on the title to get all document metadata.

Licences

License:CC BY 4.0, Creative Commons Attribution 4.0 International
Link:http://creativecommons.org/licenses/by/4.0/
Description:This is the standard Creative Commons license that gives others maximum freedom to do what they want with the work as long as they credit the author.
Licensing start date:26.08.2017

Secondary language

Language:English
Title:Risk management for »peer to peer« lending
Abstract:New digital technology leads to the process of transformation of the existing value chains and financial products or services. "P2P" lending is a new and innovative way as an investing surplus of funds as well as receiving financial capital. The number of such loans constantly grows, but lenders are not professional investors. Lenders take a lot of risks, as "P2P" lending is issued without collateral. For this purpose, "P2P" platform issue of historical data on borrowers. Research focuses on the identification of risks that are present in such an investment and to predict the possibility of loan default. The empirical study analyzes data obtained from the platform Bondora (N = 1823) from 2009 to 2015. We carried out a statistical analysis of the variables. We have developed a Logit model to predict loan defaults. The quality of the model was measured by ROC curve optimization model on the basis of balancing the classification accuracy, where we determined optimal cut-off value. The results showed that the credit default prediction model reduces the probability of financial loss on the "P2P" investment.
Keywords:credit risk, a probability of default, P2P lending, LOGIT model, risk management, C25 Discrete Regression and Qualitative Choice Models, G21 Banks, G17, Financial Forecasting and Simulation


Comments

Leave comment

You must log in to leave a comment.

Comments (0)
0 - 0 / 0
 
There are no comments!

Back
Logos of partners University of Maribor University of Ljubljana University of Primorska University of Nova Gorica