| | SLO | ENG | Cookies and privacy

Bigger font | Smaller font

Show document Help

Title:Altered Wiener indices
Authors:ID Vukičević, Damir (Author)
ID Žerovnik, Janez (Author)
Files:.pdf Acta_Chimica_Slovenica_2005_Vukicevic,_Zerovnik_Altered_Wiener_indices.pdf (991,46 KB)
MD5: FF0DC1E906D57B7B7E47A6B564EC003F
PID: 20.500.12556/dkum/ed676b34-d981-4cb2-b2e3-70790f465af2
 
URL http://acta-arhiv.chem-soc.si/52/52-3-272.pdf
 
Language:English
Work type:Scientific work
Typology:1.01 - Original Scientific Article
Organization:FS - Faculty of Mechanical Engineering
Abstract:Recently Nikolić, Trinajstić and Randić put forward a novel modification ▫$^mW(G)$▫ of the Wiener number ▫$W(G)$▫, called modified Wiener index, which definition was generalized later by Gutman and the present authors. Here we study another class of modified indices defined as ▫$W_{min,λ}(G) = ∑(V(G)^λm_G(u,ν)^λ−m_G(u,ν)^{2λ})$▫ and show that some of the important properties of ▫$W(G)$▫, ▫$^mW(G)$▫ and ▫$^λW(G)$▫ are also properties of ▫$W_{min,λ}(G)$▫, valid for most values of the parameter λ. In particular, if ▫$T_n$▫ is any n-vertex tree, different from the n-vertex path ▫$P_n$▫ and the n-vertex star ▫$S_n$▫, then for any λ ≥ 1 or λ < 0, ▫$^W_{min,λ}(P_n) > W_{min,λ}(T_n)>W_{min,λ}(S_n)$▫. Thus for these values of the parameter λ, ▫$W_{min,λ}(G)$▫ provides a novel class of structure-descriptors, suitable for modeling branching-dependent properties of organic compounds, applicable in QSPR and QSAR studies. We also demonstrate that if trees are ordered with regard to ▫$W_{min,λ}(G)$▫ then, in the general case, this ordering is different for different λ.
Keywords:mathematics, chemical graph theory, Wiener index, modified Wiener index
Publication status:Published
Publication version:Version of Record
Year of publishing:2005
Number of pages:str. 272-281
Numbering:Letn. 52, št. 3
PID:20.500.12556/DKUM-67412 New window
ISSN:1318-0207
UDC:519.17:54
ISSN on article:1318-0207
COBISS.SI-ID:9929238 New window
NUK URN:URN:SI:UM:DK:3UGNDLNW
Publication date in DKUM:17.08.2017
Views:1227
Downloads:124
Metadata:XML DC-XML DC-RDF
Categories:Misc.
:
Copy citation
  
Average score:(0 votes)
Your score:Voting is allowed only for logged in users.
Share:Bookmark and Share


Hover the mouse pointer over a document title to show the abstract or click on the title to get all document metadata.

Record is a part of a journal

Title:Acta Chimica Slovenica
Shortened title:Acta Chim. Slov.
Publisher:Slovensko kemijsko društvo
ISSN:1318-0207
COBISS.SI-ID:14086149 New window

Licences

License:CC BY 4.0, Creative Commons Attribution 4.0 International
Link:http://creativecommons.org/licenses/by/4.0/
Description:This is the standard Creative Commons license that gives others maximum freedom to do what they want with the work as long as they credit the author.
Licensing start date:17.08.2017

Secondary language

Language:Slovenian
Abstract:Nedavno so Nikolić, Trinajstić in Randić predlagali modifikacijo Wienerjevega števila ▫$W(G)$▫, definirano z ▫$^mW(G) = \sum_{uν∈E(G)} n_G(u,ν)^{-1} n_G(u,ν)^{-1}$▫. Invarianto so Gutman in avtorja posplošili na ▫$^λW(G) = \sum_{uν∈E(G)} n_G(u,ν)^λ n_G(u,ν)^λ$▫. Tu obravnavamo posplošitev podobnega tipa, ▫$W_{min,λ}(G) = \sum_{uν∈E(G)}V(G)^λm_G(u,ν)^λ−m_G(u,ν)^{2λ}$▫) in pokažemo, da nekatere pomembne lastnosti ▫$W(G) $▫, ▫$m^W(G)$▫ in ▫$^λW(G)$▫, veljajo tudi za ▫$W_{min,λ}(G)$▫, za večino vrednosti parametra λ. Dokažemo, da za poljubno drevo (povezan acikličen graf) z n točkami ▫$T_n$▫, ki ni pot ▫$P_n$▫ ali zvezda ▫$S_n$▫, velja ▫$W_{min,λ}(Pn) > W_{min,λ}(T_n) > W_{min,λ}(S_n)$▫, za vse λ ≥ 1 in λ < 0. Za te vrednosti parametra je torej ▫$W_{min,λ}(G)$▫ razred topoloških indeksov, ki so lahko uporabni pri obravnavi od razvejanosti odvisnih lastnosti v QSPR in QSAR. Dokažemo tudi, da so vsi novi indeksi različni v naslednjem smislu: če uredimo vsa drevesa glede na ▫$W_{min,λ}(G)$▫ potem za različne vrednosti parametra λ dobimo različne urejenosti.
Keywords:matematika, kemijska teorija grafov, Wienerjev indeks, modificiran Wienerjev indeks


Comments

Leave comment

You must log in to leave a comment.

Comments (0)
0 - 0 / 0
 
There are no comments!

Back
Logos of partners University of Maribor University of Ljubljana University of Primorska University of Nova Gorica