| | SLO | ENG | Cookies and privacy

Bigger font | Smaller font

Show document

Title:Algoritmi računske inteligence za razvoj umetnega športnega trenerja
Authors:Fister, Iztok (Author)
Brest, Janez (Mentor) More about this mentor... New window
Files:.pdf DOK_Fister_Iztok_2017.pdf (19,75 MB)
MD5: 1766FC9771119440BF92C6D69DCD6AAB
 
Language:Slovenian
Work type:Doctoral dissertation (mb31)
Typology:2.08 - Doctoral Dissertation
Organization:FERI - Faculty of Electrical Engineering and Computer Science
Abstract:Algoritmi računske inteligence so metode, ki delujejo po vzorih iz narave in poskušajo reševati težke probleme s posnemanjem principov naravnih sistemov. Med te metode v grobem štejemo: nevronske mreže, evolucijske algoritme, algoritme inteligence rojev, umetne imunske sisteme, sisteme na osnovi mehke logike in verjetnostne metode. Skozi zgodovino so se ti algoritmi uspešno uporabljali za reševanje problemov na skoraj vseh področjih človekovega udejstvovanja, vendar do nedavnega njihove prisotnosti ni bilo zaznati na področju športa. Doktorska disertacija tako odpira novo raziskovalno področje, kjer algoritme računske inteligence uporabimo za razvoj umetnega športnega trenerja. Umetni športni trener je sistem, ki omogoča vključevanje algoritmov računske inteligence za podporo različnih faz šport\-nega treninga. V prvem delu doktorske disertacije naredimo pregled obstoječih algoritmov računske inteligence, se dotaknemo osnov športnega treninga in orišemo koncept umetnega športnega trenerja. V eksperimentalnem delu doktorske disertacije predstavljamo praktična primera uporabe umetnega šport\-nega trenerja. Prvi primer prikazuje načrtovanje športnih treningov za različne časovne cikle, medtem ko drugi vključuje uporabo algoritma rojne inteligence za odkrivanje navad športnikov. Pridobljeni rezultati dokazujejo učinkovitost umetnega trenerja ter vzpodbujajo njegov nadaljnji razvoj.
Keywords:algoritmi računske inteligence, inteligenca rojev, načrtovanje športnih treningov, podatkovno rudarjenje, umetni športni trener
Year of publishing:2017
Publisher:[I. Fister ml.]
Source:Maribor
UDC:004.421.2:004.8(043.3)
COBISS_ID:20795670 New window
NUK URN:URN:SI:UM:DK:5VOXVF24
Views:1253
Downloads:330
Metadata:XML RDF-CHPDL DC-XML DC-RDF
Categories:KTFMB - FERI
:
  
Average score:(0 votes)
Your score:Voting is allowed only for logged in users.
Share:AddThis
AddThis uses cookies that require your consent. Edit consent...

Hover the mouse pointer over a document title to show the abstract or click on the title to get all document metadata.

Secondary language

Language:English
Title:Computational intelligence algorithms for the development of artificial sport trainer
Abstract:Computational intelligence algorithms are methods inspired by nature and, thus, they try to solve hard problems by mimicking the behavior of natural systems. Under a common umbrella, this algorithm family associates the following aforementioned members: artificial neural networks, evolutionary algorithms, swarm intelligence algorithms, artificial immune systems, fuzzy systems and probability methods. These algorithms have been applied successfully to almost all areas of human engagement through time. However, their presence within the sport domain has not been perceived yet. Therefore, this dissertation opens a new research area, where computational intelligence algorithms are used for the development of an Artificial Sport Trainer. Roughly speaking, an Artificial Sport Trainer is a system that involves computational intelligence algorithms in order to support different stages of sport training. In the first part of the existent dissertation, we outline an overview of existing computational intelligence algorithms, touch the fundamentals of sport training, and present the concept of an Artificial Sport Trainer. In the experimental part of the dissertation, we present two practical applications of an Artificial Sport Trainer. The former presents planning the sport sessions for various sport training cycles, while the latter deals with the discovering of an athlete's habits during sports training sessions. The obtained results prove the efficiency of the Artificial Sport Trainer and encourage us for further development.
Keywords:artificial sport trainer, computational intelligence algorithms, data mining, sport session planning, swarm intelligence


Comments

Leave comment

You have to log in to leave a comment.

Comments (0)
0 - 0 / 0
 
There are no comments!

Back
Logos of partners University of Maribor University of Ljubljana University of Primorska University of Nova Gorica