| | SLO | ENG | Piškotki in zasebnost

Večja pisava | Manjša pisava

Izpis gradiva Pomoč

Naslov:A comprehensive noise robust speech parameterization algorithm using wavelet packet decomposition-based denoising and speech feature representation techniques
Avtorji:ID Kotnik, Bojan (Avtor)
ID Kačič, Zdravko (Avtor)
Datoteke:.pdf EURASIP_Journal_on_Advances_in_Signal_Processing_2007_Kotnik,_Kacic_A_Comprehensive_Noise_Robust_Speech_Parameterization_Algorithm_Using.pdf (984,48 KB)
MD5: B11834830317136189B6F90E818F907E
 
URL https://asp-eurasipjournals.springeropen.com/articles/10.1155/2007/64102
 
Jezik:Angleški jezik
Vrsta gradiva:Znanstveno delo
Tipologija:1.01 - Izvirni znanstveni članek
Organizacija:FERI - Fakulteta za elektrotehniko, računalništvo in informatiko
Opis:This paper concerns the problem of automatic speech recognition in noise-intense and adverse environments. The main goal of the proposed work is the definition, implementation, and evaluation of a novel noise robust speech signal parameterization algorithm. The proposed procedure is based on time-frequency speech signal representation using wavelet packet decomposition. A new modified soft thresholding algorithm based on time-frequency adaptive threshold determination was developed to efficiently reduce the level of additive noise in the input noisy speech signal. A two-stage Gaussian mixture model (GMM)-based classifier was developed to perform speech/nonspeech as well as voiced/unvoiced classification. The adaptive topology of the wavelet packet decomposition tree based on voiced/unvoiced detection was introduced to separately analyze voiced and unvoiced segments of the speech signal. The main feature vector consists of a combination of log-root compressed wavelet packet parameters, and autoregressive parameters. The final output feature vector is produced using a two-staged feature vector postprocessing procedure. In the experimental framework, the noisy speech databases Aurora 2 and Aurora 3 were applied together with corresponding standardized acoustical model training/testing procedures. The automatic speech recognition performance achieved using the proposed noise robust speech parameterization procedure was compared to the standardized mel-frequency cepstral coefficient (MFCC) feature extraction procedures ETSI ES 201 108 and ETSI ES 202 050.
Ključne besede:speech parametrization, algorithm, speech techniques
Status publikacije:Objavljeno
Verzija publikacije:Objavljena publikacija
Leto izida:2007
Št. strani:str. 1-20
Številčenje:Letn. 2007
PID:20.500.12556/DKUM-66439 Novo okno
ISSN:1687-6172
UDK:004.9
COBISS.SI-ID:11385622 Novo okno
DOI:10.1155/2007/64102 Novo okno
ISSN pri članku:1687-6172
NUK URN:URN:SI:UM:DK:IYT9PUUY
Datum objave v DKUM:26.06.2017
Število ogledov:1707
Število prenosov:406
Metapodatki:XML DC-XML DC-RDF
Področja:Ostalo
:
Kopiraj citat
  
Skupna ocena:(0 glasov)
Vaša ocena:Ocenjevanje je dovoljeno samo prijavljenim uporabnikom.
Objavi na:Bookmark and Share


Postavite miškin kazalec na naslov za izpis povzetka. Klik na naslov izpiše podrobnosti ali sproži prenos.

Gradivo je del revije

Naslov:EURASIP Journal on Advances in Signal Processing
Skrajšan naslov:EURASIP J. Adv. Signal Process.
Založnik:Springer
ISSN:1687-6172
COBISS.SI-ID:5849428 Novo okno

Licence

Licenca:CC BY 4.0, Creative Commons Priznanje avtorstva 4.0 Mednarodna
Povezava:http://creativecommons.org/licenses/by/4.0/deed.sl
Opis:To je standardna licenca Creative Commons, ki daje uporabnikom največ možnosti za nadaljnjo uporabo dela, pri čemer morajo navesti avtorja.
Začetek licenciranja:26.06.2017

Sekundarni jezik

Jezik:Slovenski jezik
Ključne besede:algoritmi, parametri govora, tehnike govora


Komentarji

Dodaj komentar

Za komentiranje se morate prijaviti.

Komentarji (0)
0 - 0 / 0
 
Ni komentarjev!

Nazaj
Logotipi partnerjev Univerza v Mariboru Univerza v Ljubljani Univerza na Primorskem Univerza v Novi Gorici