| | SLO | ENG | Piškotki in zasebnost

Večja pisava | Manjša pisava

Izpis gradiva Pomoč

Naslov:Optimal robust motion controller design using multi-objective genetic algorithm
Avtorji:ID Sarjaš, Andrej (Avtor)
ID Svečko, Rajko (Avtor)
ID Chowdhury, Amor (Avtor)
Datoteke:.pdf The_Scientific_World_Journal_2014_Sarjas,_Svecko,_Chowdhury_Optimal_Robust_Motion_Controller_Design_Using_Multiobjective_Genetic_Algorit.pdf (2,22 MB)
MD5: 930939B1CE1097D1122A43123E9BB4BA
 
URL http://www.hindawi.com/journals/tswj/2014/978167/
 
Jezik:Angleški jezik
Vrsta gradiva:Znanstveno delo
Tipologija:1.01 - Izvirni znanstveni članek
Organizacija:FERI - Fakulteta za elektrotehniko, računalništvo in informatiko
Opis:This paper describes the use of a multi-objective genetic algorithm for robust motion controller design. Motion controller structure is based on a disturbance observer in an RIC framework. The RIC approach is presented in the form with internal and external feedback loops, in which an internal disturbance rejection controller and an external performance controller must be synthesised. This paper involves novel objectives for robustness and performance assessments for such an approach. Objective functions for the robustness property of RIC are based on simple even polynomials with non-negativity conditions. Regional pole placement method is presented with the aims of controllers% structures simplification and their additional arbitrary selection. Regional pole placement involves arbitrary selection of central polynomials for both loops, with additional admissible region of the optimized pole location. Polynomial deviation between selected and optimized polynomials is measured with derived performance objective functions. A multi-objective function is composed of different unrelated criteria such as, robust stability, controllers' stability and time performance indexes of closed loops. The design of controllers and multi-objective optimization procedure involve a set of the objectives, which are optimized simultaneously with a genetic algorithm - Differential evolution.
Ključne besede:disturbance observer, DOB, uncertainty systems, optimal robust control, multi-objective optimization, differential evolution
Status publikacije:Objavljeno
Verzija publikacije:Objavljena publikacija
Leto izida:2014
Št. strani:str. 1-14
Številčenje:Letn. 2014
PID:20.500.12556/DKUM-66224 Novo okno
ISSN:1537-744X
UDK:61:004.5
COBISS.SI-ID:17704982 Novo okno
DOI:10.1155/2014/978167 Novo okno
ISSN pri članku:1537-744X
NUK URN:URN:SI:UM:DK:GLWDYOQI
Datum objave v DKUM:15.06.2017
Število ogledov:1630
Število prenosov:364
Metapodatki:XML DC-XML DC-RDF
Področja:Ostalo
:
Kopiraj citat
  
Skupna ocena:(0 glasov)
Vaša ocena:Ocenjevanje je dovoljeno samo prijavljenim uporabnikom.
Objavi na:Bookmark and Share


Postavite miškin kazalec na naslov za izpis povzetka. Klik na naslov izpiše podrobnosti ali sproži prenos.

Gradivo je del revije

Naslov:The Scientific World Journal
Založnik:Hindawi Publishing Corporation
ISSN:1537-744X
COBISS.SI-ID:2607642 Novo okno

Licence

Licenca:CC BY 4.0, Creative Commons Priznanje avtorstva 4.0 Mednarodna
Povezava:http://creativecommons.org/licenses/by/4.0/deed.sl
Opis:To je standardna licenca Creative Commons, ki daje uporabnikom največ možnosti za nadaljnjo uporabo dela, pri čemer morajo navesti avtorja.
Začetek licenciranja:15.06.2017

Sekundarni jezik

Jezik:Slovenski jezik
Ključne besede:negotovost, optimalno robustno vodenje, večciljna optimizacija, diferencialna evolucija


Komentarji

Dodaj komentar

Za komentiranje se morate prijaviti.

Komentarji (0)
0 - 0 / 0
 
Ni komentarjev!

Nazaj
Logotipi partnerjev Univerza v Mariboru Univerza v Ljubljani Univerza na Primorskem Univerza v Novi Gorici