| | SLO | ENG | Cookies and privacy

Bigger font | Smaller font

Show document

Title:Hybridization of stochastic local search and genetic algorithm for human resource planning management
Authors:Škraba, Andrej (Author)
Stanovov, Vladimir (Author)
Semenkin, Eugene (Author)
Kofjač, Davorin (Author)
Files:.pdf Organizacija_2016_Skraba_et_al._Hybridization_of_Stochastic_Local_Search_and_Genetic_Algorithm_for_Human_Resource_Planning_Management.pdf (474,90 KB)
MD5: 8B8C6D49512F53A2DD5F06154FC93145
 
URL http://www.degruyter.com/view/j/orga.2016.49.issue-1/orga-2016-0005/orga-2016-0005.xml
 
Language:English
Work type:Scientific work (r2)
Typology:1.01 - Original Scientific Article
Organization:FOV - Faculty of Organizational Sciences in Kranj
Abstract:Background and Purpose: The restructuring of human resources in an organization is addressed in this paper, because human resource planning is a crucial process in every organization. Here, a strict hierarchical structure of the organization is of concern here, for which a change in a particular class of the structure influences classes that follow it. Furthermore, a quick adaptation of the structure to the desired state is required, where oscillations in transitions between classes are not desired, because they slow down the process of adaptation. Therefore, optimization of such a structure is highly complex, and heuristic methods are needed to approach such problems to address them properly. Design/Methodology/Approach: The hierarchical human resources structure is modeled according to the principles of System Dynamics. Optimization of the structure is performed with an algorithm that combines stochastic local search and genetic algorithms. Results: The developed algorithm was tested on three scenarios; each scenario exhibits a different dynamic in achieving the desired state of the human resource structure. The results show that the developed algorithm has successfully optimized the model parameters to achieve the desired structure of human resources quickly. Conclusion: We have presented the mathematical model and optimization algorithm to tackle the restructuring of human resources for strict hierarchical organizations. With the developed algorithm, we have successfully achieved the desired organizational structure in all three cases, without the undesired oscillations in the transitions between classes and in the shortest possible time.
Keywords:stochastic local search, system dynamics, human resources, simulation
Year of publishing:2016
Number of pages:str. 42-54
Numbering:št. 1, Letn. 49
ISSN:1318-5454
UDC:004.94
ISSN on article:1318-5454
COBISS_ID:7526419 New window
DOI:10.1515/orga-2016-005 New window
NUK URN:URN:SI:UM:DK:YAKBZNAW
Views:637
Downloads:274
Metadata:XML RDF-CHPDL DC-XML DC-RDF
Categories:Misc.
:
  
Average score:(0 votes)
Your score:Voting is allowed only for logged in users.
Share:AddThis
AddThis uses cookies that require your consent. Edit consent...

Hover the mouse pointer over a document title to show the abstract or click on the title to get all document metadata.

Record is a part of a journal

Title:Organizacija
Publisher:Fakulteta za organizacijske vede Univerze v Mariboru, Založba Moderna organizacija, Sciendo
ISSN:1318-5454
COBISS.SI-ID:610909 New window

Document is financed by a project

Funder:ARRS - Agencija za raziskovalno dejavnost Republike Slovenije (ARRS)
Project no.:P5-0018
Name:Sistemi za podporo odločanju v elektronskem poslovanju

Licences

License:CC BY-NC-ND 4.0, Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International
Link:http://creativecommons.org/licenses/by-nc-nd/4.0/
Description:The most restrictive Creative Commons license. This only allows people to download and share the work for no commercial gain and for no other purposes.
Licensing start date:04.04.2017

Secondary language

Language:Slovenian
Title:Hibridizacija stohastičnega lokalnega iskanja in genetskih algoritmov za planiranje človeških virov
Abstract:Ozadje in cilj: V prispevku je obravnavana reorganizacija na področju človeških virov kot najpomembnejšega dejavnika v vsaki organizaciji. Obravnavali smo striktno hierarhično strukturo organizacije, kjer spremembe v posameznem nižjem razredu vplivajo na višje razrede. Pri reorganizaciji želimo, da se struktura čim prej prilagodi novim, želenim vrednostim. Pri tem so nihanja v številu prehodov nezaželena, saj neugodno vplivajo na proces reorganizacije. Optimizacija tovrstne strukture je kompleksna in zahteva ustrezen pristop s hevrističnimi metodami. Metodologija in pristop: Hierarhična struktura človeških virov v organizaciji je modelirana s pomočjo principov sistemske dinamike. Optimizacija dinamike obravnavane strukture je izvedena z algoritmom, ki kombinira stohastično lokalno iskanje in genetske algoritme. Rezultati: Razviti algoritem je bil testiran na treh različnih scenarijih; vsak od scenarijev je izkazoval drugačno dinamiko pri doseganju želenih stanj v strukturi človeških virov. Rezultati so potrdili uspešnost razvitega algoritma za optimizacijo parametrov modela, ki omogoča hitro doseganje ciljnih stanj. Zaključek: Predstavili smo matematični model in optimizacijski algoritem, ki omogoča prestrukturiranje na področju človeških virov v organizacijah. S pomočjo razvitega algoritma smo uspešno dosegli želeno organizacijsko strukturo v treh različnih podanih scenarijih brez nezaželenih oscilacij v številu prehodov.
Keywords:stohastično lokalno iskanje, sistemska dinamika, človeški viri, simulacija


Collection

This document is a part of these collections:
  1. Organizacija

Comments

Leave comment

You have to log in to leave a comment.

Comments (0)
0 - 0 / 0
 
There are no comments!

Back
Logos of partners University of Maribor University of Ljubljana University of Primorska University of Nova Gorica