| | SLO | ENG | Cookies and privacy

Bigger font | Smaller font

Show document

Title:Uvod v teorijo Gaussovih fakultet
Authors:Vučak Markež, Urška (Author)
Eremita, Daniel (Mentor) More about this mentor... New window
Files:.pdf UN_Vucak_Markez_Urska_2016.pdf (347,45 KB)
MD5: F7DF9088E22505126D4A0F023609F34F
 
Language:Slovenian
Work type:Undergraduate thesis (m5)
Typology:2.11 - Undergraduate Thesis
Organization:FNM - Faculty of Natural Sciences and Mathematics
Abstract:V diplomskem delu je obravnavana Gaussova fakulteta N_n!, ki je definirana kot produkt vseh naravnih števil do števila N, ki so tuja s številom n. Na začetku so predstavljeni osnovni pojmi elementarne teorije števil, ki so potrebni za razumevanje nadaljne obravnave. V drugem poglavju obravnavamo Wilsonov izrek in Gaussovo posplošitev tega izreka ter definiramo Gaussovo fakulteto. Osrednji del diplomskega dela je tretje poglavje, v katerem posebno pozornost namenimo Gaussovi fakulteti oblike ((n-1)/M_n! in delnim produktom, ki jih dobimo, ko produkt (n-1)_n! razdelimo na M enakih delov. Najprej se omejimo na praštevila, nato opazujemo delne produkte števila (n-1)_n! in se vprašamo, kdaj so vsi med seboj kongruentni. Za konec dokažemo še dve domnevi iz začetka poglavja s pomočjo Gaussovega in Jacobijevega izreka o binomskih koeficientih in zaključimo z njunimi razširitvami.
Keywords:Wilsonov izrek, Gaussov izrek, Gaussova fakulteta, Eulerejeva funkcija, praštevilo, kongruence.
Year of publishing:2016
Publisher:[U. Vučak Markež]
Source:Ptuj
UDC:511(043.2)
COBISS_ID:22758152 New window
NUK URN:URN:SI:UM:DK:VNDJN8IY
Views:797
Downloads:120
Metadata:XML RDF-CHPDL DC-XML DC-RDF
Categories:FNM
:
  
Average score:(0 votes)
Your score:Voting is allowed only for logged in users.
Share:AddThis
AddThis uses cookies that require your consent. Edit consent...

Hover the mouse pointer over a document title to show the abstract or click on the title to get all document metadata.

Secondary language

Language:English
Title:An introduction to Gauss factorials
Abstract:In the graduation thesis we study Gauss factorial N_n!, which is defined as the product of all positive integers up to N, that are relatively prime to n. At first the basic concepts of elementary number theory necessary for understanding the following treatment are presented. In the second chapter Wilson’s theorem and its generalization by Gauss are presented and Gauss factorial is defined. The main part of the graduation thesis is the third chapter in which the special treatment is on Gauss factorials ((n-1)/M)_n! and partial products which are obtained when the product (n-1)_n! is divided into M equal parts. At first we restrict ourselfs on primes, then we observe the partial products of (n-1)_n! and we ask ourselfs, when they are all congruent to each other. At the end the two assumptions from the beginning of the chapter are proved with the Gauss’s and Jacobi’s binomial coeficient theorem and presenting their extensions we end the chapter.
Keywords:Wilson’s theorem, Gauss’s theorem, Gauss factorial, Euler function, prime number, congruence.


Comments

Leave comment

You have to log in to leave a comment.

Comments (0)
0 - 0 / 0
 
There are no comments!

Back
Logos of partners University of Maribor University of Ljubljana University of Primorska University of Nova Gorica