| | SLO | ENG | Cookies and privacy

Bigger font | Smaller font

Show document Help

Title:Roman domination number of the Cartesian products of paths and cycles
Authors:ID Repolusk, Polona (Author)
ID Žerovnik, Janez (Author)
Files:URL http://www.imfm.si/preprinti/PDF/01165.pdf
 
Language:English
Work type:Not categorized
Typology:1.01 - Original Scientific Article
Organization:FNM - Faculty of Natural Sciences and Mathematics
Abstract:Rimska dominacija je zgodovinsko utemeljena različica običajne dominacije, pri kateri vozlišča grafa označimo z oznakami iz množice ▫${0,1,2}$▫ tako, da ima vsako vozlišče z oznako 0 soseda z oznako 2. Najmanjšo izmed vsot oznak grafa imenujemo rimsko dominantno število grafa. Z uporabo algebraičnega pristopa dobimo konstantni algoritem za računanje rimskega dominantnega števila posebne vrste poligrafov: rota- in fasciagrafov. V posebnih primerih izračunamo formule za rimsko dominanto število kartezičnega produkta poti in ciklov ▫$P_n Box P_k$▫, ▫$P_n Box C_k$▫ za ▫$k leq 8$▫ in ▫$n in {mathbb N}$▫ ter za ▫$C_n Box P_k$▫ in ▫$C_n Box C_k$▫ za ▫$k leq 5$▫, ▫$n in {mathbb N}$▫. Dodan je seznam rimskih grafov med kartezičnimi produkti zgoraj omenjenih poti in ciklov.
Keywords:teorija grafov, kartezični produkt, rimsko dominantno število, poligrafi, algebra poti, graph theory, Roman domination number, Cartesian product, polygraphs, path algebra
Year of publishing:2011
Number of pages:str. 1-30
Numbering:Vol. 49, št. 1165
PID:20.500.12556/DKUM-51907 New window
UDC:519.17
ISSN on article:2232-2094
COBISS.SI-ID:16078169 New window
NUK URN:URN:SI:UM:DK:SYTQ0GTH
Publication date in DKUM:10.07.2015
Views:1762
Downloads:73
Metadata:XML DC-XML DC-RDF
Categories:Misc.
:
Copy citation
  
Average score:(0 votes)
Your score:Voting is allowed only for logged in users.
Share:Bookmark and Share


Hover the mouse pointer over a document title to show the abstract or click on the title to get all document metadata.

Record is a part of a journal

Title:Preprint series
Publisher:Inštitut za matematiko, fiziko in mehaniko
ISSN:2232-2094
COBISS.SI-ID:15706713 New window

Secondary language

Language:English
Title:Rimsko dominantno število kartezičnega produkta poti in ciklov
Abstract:Roman domination is a historically inspired variety of general domination such that every vertex is labeled with labels from ${0,1,2}$. Roman domination number is the smallest of the sums of labels fulfilling condition that every vertex, labeled 0, has a neighbor, labeled 2. Using algebraic approach we give ▫$O(C)$▫ time algorithm for computing Roman domination number of special classes of polygraphs (rota- and fasciagraphs). By implementing the algorithm we give formulas for Roman domination number of the Cartesian products of paths and cycles ▫$P_n Box P_k$▫, ▫$P_n Box C_k$▫ for ▫$k leq 8$▫ and ▫$n in {mathbb N}$▫ and for ▫$C_n Box P_k$▫ and ▫$C_n Box C_k$▫ for ▫$k leq 5$▫, ▫$n in {mathbb N}$▫. We also give a list of Roman graphs among investigated families.


Comments

Leave comment

You must log in to leave a comment.

Comments (0)
0 - 0 / 0
 
There are no comments!

Back
Logos of partners University of Maribor University of Ljubljana University of Primorska University of Nova Gorica