Naslov: | Retracts of products of chordal graphs |
---|
Avtorji: | ID Brešar, Boštjan (Avtor) ID Chalopin, Jérémie (Avtor) ID Chepoi, Victor (Avtor) ID Kovše, Matjaž (Avtor) ID Labourel, Arnaud (Avtor) ID Vaxès, Yann (Avtor) |
Datoteke: | http://www.imfm.si/preprinti/PDF/01134.pdf
|
---|
Jezik: | Angleški jezik |
---|
Vrsta gradiva: | Delo ni kategorizirano (r6) |
---|
Organizacija: | FNM - Fakulteta za naravoslovje in matematiko
|
---|
Opis: | We characterize the graphs ▫$G$▫ that are retracts of Cartesian products of chordal graphs. We show that they are exactly the weakly modular graphs that do not contain ▫$K_{2;3}$▫, ▫$k$▫-wheels ▫$W_k$▫, and ▫$k$▫-wheels minus one spoke T$W_k^- ; (k ge 4)$T as induced subgraphs. We also show that these graphs ▫$G$▫ are exactly the cage-amalgamation graphs introduced by Brešar and Tepeh Horvat (2009); this solves the open question raised by these authors. Finally, we prove that replacing all products of cliques of $G$ by products of "solid" simplices, we obtain a polyhedral cell complex which, endowed with an intrinsic Euclidean metric, is a CAT(0) space. This generalizes similar results about median graphs as retracts of hypercubes (products of edges) and median graphs as 1-skeletons of CAT(0) cubical complexes. |
---|
Ključne besede: | teorija grafov, graf, retrakt, zastražena amalgamacija, tetiven graf, kartezični produkt grafov, medianski graf, graph theory, graph, retract, gated amalgamation, chordal graph, Cartesian product of graphs, median graph |
---|
Leto izida: | 2010 |
---|
Št. strani: | str. 1-20 |
---|
Številčenje: | Vol. 48, št. 1134 |
---|
ISSN: | 2232-2094 |
---|
UDK: | 519.17 |
---|
COBISS.SI-ID: | 15751513  |
---|
NUK URN: | URN:SI:UM:DK:NGAKPCB0 |
---|
Datum objave v DKUM: | 10.07.2015 |
---|
Število ogledov: | 663 |
---|
Število prenosov: | 85 |
---|
Metapodatki: |  |
---|
Področja: | Ostalo
|
---|
:
|
|
---|
| | | Skupna ocena: | (0 glasov) |
---|
Vaša ocena: | Ocenjevanje je dovoljeno samo prijavljenim uporabnikom. |
---|
Objavi na: |  |
|
Postavite miškin kazalec na naslov za izpis povzetka. Klik na naslov izpiše
podrobnosti ali sproži prenos. |