Title: | Characterizing Jordan maps on C [ast]-algebras through zero products |
---|
Authors: | ID Alaminos, J. (Author) ID Brešar, Matej (Author) ID Extremera, J. (Author) ID Villena, A. R. (Author) |
Files: | http://dx.doi.org/10.1017/S0013091509000534
|
---|
Language: | English |
---|
Work type: | Not categorized |
---|
Typology: | 1.01 - Original Scientific Article |
---|
Organization: | FNM - Faculty of Natural Sciences and Mathematics
|
---|
Abstract: | Naj bosta ▫$A$▫ in ▫$B$▫ ▫$C^ast$▫-algebri, ▫$X$▫ naj bo bistveni Banachov ▫$A$▫-bimodul in naj bosta ▫$T colon A to B$▫ in ▫$S colon A to X$▫ zvezni linearni preslikavi; ▫$T$▫ naj bo surjektivna. Denimo, da je ▫$T(a)T(b) + T(b)T(a) = 0$▫ in ▫$S(a)b + bS(a) + aS(b) + S(b)a = 0$▫, kadarkoli ▫$a, b in A$▫ zadoščata ▫$ab = ba = 0$▫. Dokažemo, da je ▫$T = wPhi$▫ in ▫$S = D + wPsi$▫, kjer ▫$w$▫ leži v centru multiplikatorske algebre ▫$B$▫, ▫$Phicolon A to B$▫ je jordanski epimorfizem, ▫$D colon A to X$▫ je odvajanje in ▫$Psi colon A to X$▫ je bimodulski homomorfizem. |
---|
Keywords: | matematika, teorija operatorjev, ▫$C^ast$▫-algebra, homomorfizem, jordanski homomorfizem, odvajanje, jordansko odvajanje, ohranjevalec ničelnega produkta, mathematics, operator theory, ▫$C^ast$▫-algebra, homomorphism, Jordan homomorphism, derivation, Jordan derivation, zero-product-preserving map |
---|
Year of publishing: | 2010 |
---|
Number of pages: | str. 543-555 |
---|
Numbering: | Vol. 53, iss. 3 |
---|
PID: | 20.500.12556/DKUM-51871 |
---|
UDC: | 517.98 |
---|
ISSN on article: | 0013-0915 |
---|
COBISS.SI-ID: | 15703129 |
---|
NUK URN: | URN:SI:UM:DK:8PIBOJEQ |
---|
Publication date in DKUM: | 10.07.2015 |
---|
Views: | 1114 |
---|
Downloads: | 47 |
---|
Metadata: | |
---|
Categories: | Misc.
|
---|
:
|
Copy citation |
---|
| | | Average score: | (0 votes) |
---|
Your score: | Voting is allowed only for logged in users. |
---|
Share: | |
---|
Hover the mouse pointer over a document title to show the abstract or click
on the title to get all document metadata. |