| | SLO | ENG | Cookies and privacy

Bigger font | Smaller font

Show document Help

Title:Maps preserving zero products
Authors:ID Alaminos, J. (Author)
ID Brešar, Matej (Author)
ID Extremera, J. (Author)
ID Villena, A. R. (Author)
Files:URL http://dx.doi.org/10.4064/sm193-2-3
 
Language:English
Work type:Not categorized
Typology:1.01 - Original Scientific Article
Organization:FNM - Faculty of Natural Sciences and Mathematics
Abstract:Linearna preslikava ▫$T$▫ iz Banachove algebre ▫$A$▫ v Banachovo algebro ▫$B$▫ ohranja ničelni produkt, če je ▫$T(a)T(b) = 0$▫, kadarkoli je ▫$ab = 0$▫. Glavna tema članka je vprašanje, kdaj je zvezna linearna surjektivna preslikava ▫$T: A to B$▫, ki ohranja ničelni produkt, uteženi homomorfizem. Dokažemo, da to velja za velik razred algeber, ki vključuje grupne algebre. Naša metoda sloni na obravnavi bilinearnih preslikav ▫$phi : A times A to X$▫ (kjer je ▫$X$▫ Banachov prostor) z lastnostjo, da iz ▫$ab=0$▫ sledi ▫$phi(a,b) = 0$▫. Dokažemo, da taka preslikava zadošča ▫$phi(amu, b) = phi(a,mu b)$▫ za vse ▫$a,b in A$▫ in vse ▫$mu$▫ iz zaprtja glede na krepko operatorsko topologijo podalgebre multiplikacijske algebre ▫${mathcal M}(A)$▫ generirane z dvostranko potenčno omejenimi elementi. Ta metoda je uporabna tudi za karakterizacijo odvajanj s pomočjo ničelnega produkta.
Keywords:matematika, teorija operatorjev, grupna algebra, ▫$C^ast$▫-algebra, homomorfizem, uteženi homomorfizem, odvajanje, posplošeno odvajanje, mathematics, operator theory, group algebra, ▫$C^ast$▫-algebra, homomorphism, weighted homomorphism, derivation, generalized derivation, separating map, disjointness preserving map, zero product preserving map, doubly power-bounded element
Year of publishing:2009
Number of pages:str. 131-159
Numbering:Vol. 193, no. 2
PID:20.500.12556/DKUM-51794 New window
UDC:517.983
ISSN on article:0039-3223
COBISS.SI-ID:15201369 New window
NUK URN:URN:SI:UM:DK:CHMSVEF1
Publication date in DKUM:10.07.2015
Views:1301
Downloads:99
Metadata:XML DC-XML DC-RDF
Categories:Misc.
:
Copy citation
  
Average score:(0 votes)
Your score:Voting is allowed only for logged in users.
Share:Bookmark and Share


Hover the mouse pointer over a document title to show the abstract or click on the title to get all document metadata.

Record is a part of a journal

Title:Studia Mathematica
Shortened title:Stud. Math.
Publisher:Państwowe Wydawnictwo Naukowe
ISSN:0039-3223
COBISS.SI-ID:26464256 New window

Secondary language

Language:Unknown
Title:Uhranjevalci ničelnega produkta
Abstract:A linear map ▫$T$▫ from a Banach algebra ▫$A$▫ into another ▫$B$▫ preserves zero products if ▫$T(a)T(b) = 0$▫ whenever ▫$a,b in A$▫ are such that ▫$ab = 0$▫. This paper is mainly concerned with the question of whether every continuous linear surjective map ▫$T: A to B$▫ that preserves zero products is a weighted homomorphism. We show that this is indeed the case for a large class of Banach algebras which includes group algebras. Our method involves continuous bilinear maps ▫$phi : A times A to X$▫ (for some Banach space ▫$X$▫) with the property that ▫$phi(a,b) = 0$▫ whenever ▫$a,b in A$▫ are such that ▫$ab = 0$▫. We prove that such a map necessarily satises ▫$phi(amu, b) = phi(a, mu b)$▫ for all ▫$a,b in A$▫ and for all ▫$mu$▫ from the closure with respect to the strong operator topology of the subalgebra of ▫${mathcal M}(A)$▫ (the multiplier algebra of ▫$A$▫) generated by doubly power-bounded elements of ▫${mathcal M}(A)$▫. This method is also shown to be useful for characterizing derivations through the zero products.


Comments

Leave comment

You must log in to leave a comment.

Comments (0)
0 - 0 / 0
 
There are no comments!

Back
Logos of partners University of Maribor University of Ljubljana University of Primorska University of Nova Gorica