Naslov: | Domination game |
---|
Avtorji: | ID Brešar, Boštjan (Avtor) ID Klavžar, Sandi (Avtor) ID Rall, Douglas F. (Avtor) |
Datoteke: | http://www.imfm.si/preprinti/PDF/01066.pdf
|
---|
Jezik: | Angleški jezik |
---|
Vrsta gradiva: | Delo ni kategorizirano |
---|
Organizacija: | FNM - Fakulteta za naravoslovje in matematiko
|
---|
Opis: | The domination game played on a graph ▫$G$▫ consists of two players, Dominator and Staller who alternate taking turns choosing a vertex from ▫$G$▫ such that whenever a vertex is chosen the graph in as few steps as possible and Staller wishes to delay the process as much as possible. The game domination number ▫$gamma_g(G)$▫ is the number of vertices chosen when Dominator starts the game and the Staller-start game domination number ▫$gamma'_g(G)$▫ when Staller starts the game. It is proved that for any graph ▫$G$▫, ▫$gamma(G) le gamma_g(G) le 2gamma(G) - 1$▫, and that all possible values can be realized. It is also proved that for any graph ▫$G$▫, ▫$gamma_g(G) - 1 le gamma'_g(G) le gamma_g(G) + 2$▫, and that most of the possibilities for mutual values of ▫$gamma_g(G)$▫ and ▫$gamma'_g(G)$▫ can be realized. A connection with Vizing's conjecture is established and several problems and conjectures stated. |
---|
Ključne besede: | teorija grafov, teorija iger, dominantnost, Vizingova domneva, graph theory, game theory, domination, domination game, game domination number, Vizing's conjecture |
---|
Leto izida: | 2009 |
---|
Št. strani: | str. 1-14 |
---|
Številčenje: | Vol. 47, št. 1066 |
---|
PID: | 20.500.12556/DKUM-51759 |
---|
ISSN: | 1318-4865 |
---|
UDK: | 519.17:519.83 |
---|
COBISS.SI-ID: | 15032921 |
---|
NUK URN: | URN:SI:UM:DK:FIGMXG8Z |
---|
Datum objave v DKUM: | 10.07.2015 |
---|
Število ogledov: | 1963 |
---|
Število prenosov: | 31 |
---|
Metapodatki: | |
---|
Področja: | Ostalo
|
---|
:
|
Kopiraj citat |
---|
| | | Skupna ocena: | (0 glasov) |
---|
Vaša ocena: | Ocenjevanje je dovoljeno samo prijavljenim uporabnikom. |
---|
Objavi na: | |
---|
Postavite miškin kazalec na naslov za izpis povzetka. Klik na naslov izpiše
podrobnosti ali sproži prenos. |