| | SLO | ENG | Cookies and privacy

Bigger font | Smaller font

Show document Help

Title:Zero product preserving maps on C[sup]1 [0,1]
Authors:ID Alaminos, J. (Author)
ID Brešar, Matej (Author)
ID Černe, Miran (Author)
ID Extremera, J. (Author)
ID Villena, A. R. (Author)
Files:URL http://dx.doi.org/10.1016/j.jmaa.2008.06.037
 
Language:English
Work type:Not categorized
Typology:1.01 - Original Scientific Article
Organization:FNM - Faculty of Natural Sciences and Mathematics
Abstract:Glavni rezultat članka karakterizira zvezne bilinearne preslikave ▫$phi$▫ iz ▫$C^1[0,1] times C^1[0,1]$▫ v Banachov prostor ▫$X$▫ z lastnostjo, da iz ▫$fg=0$▫ sledi ▫$phi(f,g) = 0$▫. Ta rezultat se uporabi pri študiju ohranjevalcev ničelnega produkta na ▫$C^1[0,1]$▫ in pri študiju operatorjev na ▫$C^1[0,1]$▫, ki zadoščajo neki verzijo pogoja o lokalnosti operatorja.
Keywords:matematika, teorija operatorjev, zvezne odvedljive funkcije, bilinearni ohranjevalci ničelnega produkta, linearni ohranjevalci ničelnega produkta, lokalni operator, mathematics, operator theory, continuously differentiable functions, zero product preserving bilinear map, zero product preserving linear map, local operator
Year of publishing:2008
Number of pages:str. 472-481
Numbering:Vol. 347, no. 2
PID:20.500.12556/DKUM-51750 New window
UDC:517.983
ISSN on article:0022-247X
COBISS.SI-ID:14892377 New window
DOI:10.1016/j.jmaa.2008.06.037 New window
NUK URN:URN:SI:UM:DK:MM4HFZJF
Publication date in DKUM:10.07.2015
Views:1192
Downloads:48
Metadata:XML DC-XML DC-RDF
Categories:Misc.
:
Copy citation
  
Average score:(0 votes)
Your score:Voting is allowed only for logged in users.
Share:Bookmark and Share


Hover the mouse pointer over a document title to show the abstract or click on the title to get all document metadata.

Record is a part of a journal

Title:Journal of mathematical analysis and applications
Shortened title:J. math. anal. appl.
Publisher:Elsevier
ISSN:0022-247X
COBISS.SI-ID:3081231 New window

Secondary language

Language:Unknown
Title:Ohranjevalci ničelnega produkta na C[na]1 [0,1]
Abstract:The main result of the paper characterizes continuous bilinear maps ▫$phi$▫ from ▫$C^1[0,1] times C^1[0,1]$▫ into a Banach space ▫$X$▫ with the property that ▫$phi(f,g) = 0$▫ whenever ▫$fg=0$▫. This is applied to the study of zero product preserving operators on ▫$C^1[0,1]$▫, and operators on ▫$C^1[0,1]$▫ satisfying a version of the condition of the locality of an operator.


Comments

Leave comment

You must log in to leave a comment.

Comments (0)
0 - 0 / 0
 
There are no comments!

Back
Logos of partners University of Maribor University of Ljubljana University of Primorska University of Nova Gorica