| | SLO | ENG | Cookies and privacy

Bigger font | Smaller font

Show document Help

Title:Characterizing homomorphisms, derivations and multipliers in rings with idempotents
Authors:ID Brešar, Matej (Author)
Files:URL http://www.ingentaconnect.com/content/rse/proca
 
Language:English
Work type:Not categorized
Typology:1.01 - Original Scientific Article
Organization:FNM - Faculty of Natural Sciences and Mathematics
Abstract:V določenih kolobarjih z necentralnimi idempotenti karakteriziramo homomorfizme, odvajanja in multilplikatorje z njihovim delovanjem na elementih, ki zadoščajo določenim zvezam. Tako je npr. obravnavan pogoj, da aditivna preslikava ▫$h$▫ med kolobarjema ▫$mathcal{A}$▫ in ▫$mathcal{B}$▫ zadošča ▫$h(x)h(y)h(z)=0$▫ kadarkoli je ▫$xy=yz=0$▫. Kot aplikacijo dobimo nove rezultate o lokalnih odvajanjih in lokalnih multiplikatorjih. Med drugim dokažemo, da je vsako odvajanje na prakolobarju z netrivialnim idempotentom odvajanje.
Keywords:matematika, kolobar, idempotent, homomorfizem, odvajanje, multiplikator, mathematics, ring, idempotent, homomorphism, derivation, multiplier
Year of publishing:2007
Number of pages:str. 9-21
Numbering:Vol. 137, no. 1
PID:20.500.12556/DKUM-51589 New window
UDC:512.552
ISSN on article:0308-2105
COBISS.SI-ID:14253145 New window
NUK URN:URN:SI:UM:DK:AOB5F8TH
Publication date in DKUM:10.07.2015
Views:1039
Downloads:76
Metadata:XML DC-XML DC-RDF
Categories:Misc.
:
Copy citation
  
Average score:(0 votes)
Your score:Voting is allowed only for logged in users.
Share:Bookmark and Share


Hover the mouse pointer over a document title to show the abstract or click on the title to get all document metadata.

Record is a part of a journal

Title:Proceedings
Shortened title:Proc. R. Soc. Edinb., Sect. A, Math.
Publisher:#The #Royal Society
ISSN:0308-2105
COBISS.SI-ID:26180608 New window

Secondary language

Language:Unknown
Title:Karakterizacija homomorfizmov, odvajanj in multiplikatorjev v kolobarjih z idempotenti
Abstract:In certain rings containing non-central idempotents we characterize homomorphisms and multipliers by their actions on elements satisfying some special conditions. For example, we consider the condition that an additive map ▫$h$▫ between rings ▫$mathcal{A}$▫ and ▫$mathcal{B}$▫ satisfies ▫$h(x)h(y)h(z)=0$▫ whenever ▫$x,y,y in mathcal{A}$▫ are such that ▫$xy=yz=0$▫. As an application, we obtain some new results on local derivations and local multipliers. In particular, we prove that if ▫$mathcal{A}$▫ is a prime ring containing a non-trivial idempotent, then every local derivation from ▫$mathcal{A}$▫ into itself is a derivation.


Comments

Leave comment

You must log in to leave a comment.

Comments (0)
0 - 0 / 0
 
There are no comments!

Back
Logos of partners University of Maribor University of Ljubljana University of Primorska University of Nova Gorica