Naslov: | Codes and L(2,1)-labelings in Sierpiński graphs |
---|
Avtorji: | ID Gravier, Sylvain (Avtor) ID Klavžar, Sandi (Avtor) ID Mollard, Michel (Avtor) |
Datoteke: | http://www.math.nthu.edu.tw/~tjm/myweb/FrameConAbs.htm
|
---|
Jezik: | Angleški jezik |
---|
Vrsta gradiva: | Članek v reviji |
---|
Tipologija: | 1.01 - Izvirni znanstveni članek |
---|
Organizacija: | PEF - Pedagoška fakulteta
|
---|
Opis: | The ▫$lambda$▫-number of a graph ▫$G$▫ is the minimum value ▫$lambda$▫ such that ▫$G$▫ admits a labeling with labels from ▫${0, 1,..., lambda}$▫ where vertices at distance two get different labels and adjacent vertices get labels that are at least two apart. Sierpiński graphs ▫$S(n,k)$▫ generalize the Tower of Hanoi graphs - the graph ▫$S(n,3)$▫ is isomorphic to the graph of the Tower of Hanoi with ▫$n$▫ disks. It is proved that for any ▫$n ge $▫2 and any ▫$k ge 3$▫, ▫$lambda (S(n,k)) = 2k$▫. To obtain the result (perfect) codes in Sierpiński graphs are studied in detail. In particular a new proof of their (essential) uniqueness is obtained.
|
---|
Ključne besede: | matematika, teorija grafov, ▫$L(2,1)$▫-označitev, ▫$lambda$▫-število, grafovske kode, popolne kode, grafi Sierpińskega, mathematics, graph theory, ▫$L(2,1)▫$-labelings, ▫$lambda$▫-number, codes in graphs, perfect codes, Sierpiński graphs |
---|
Leto izida: | 2005 |
---|
Št. strani: | str. 671-681 |
---|
Številčenje: | Vol. 9, no. 4 |
---|
PID: | 20.500.12556/DKUM-51513 |
---|
UDK: | 519.17 |
---|
COBISS.SI-ID: | 13843801 |
---|
ISSN pri članku: | 1027-5487 |
---|
NUK URN: | URN:SI:UM:DK:NCRIDAUC |
---|
Datum objave v DKUM: | 10.07.2015 |
---|
Število ogledov: | 1224 |
---|
Število prenosov: | 71 |
---|
Metapodatki: | |
---|
Področja: | Ostalo
|
---|
:
|
Kopiraj citat |
---|
| | | Skupna ocena: | (0 glasov) |
---|
Vaša ocena: | Ocenjevanje je dovoljeno samo prijavljenim uporabnikom. |
---|
Objavi na: | |
---|
Postavite miškin kazalec na naslov za izpis povzetka. Klik na naslov izpiše
podrobnosti ali sproži prenos. |