| | SLO | ENG | Cookies and privacy

Bigger font | Smaller font

Show document

Title:Simpler multicoloring of triangle-free hexagonal graphs
Authors:Sau Walls, Ignasi (Author)
Šparl, Petra (Author)
Žerovnik, Janez (Author)
Files:URL http://dx.doi.org/10.1016/j.disc.2011.07.031
 
Language:English
Work type:Not categorized (r6)
Typology:1.08 - Published Scientific Conference Contribution
Organization:FOV - Faculty of Organizational Sciences in Kranj
Abstract:Preslikavo ▫$f colon V(G)to 2^{{1,.,n}}$▫, za katero velja ▫$|f(v)| ge p(v)$▫ za vsako točko ▫$v in V(G)$▫ in ▫$f(v) cap f(u) = emptyset$▫ za poljubni sosedi ▫$u$▫ in ▫$v$▫ grafa ▫$G$▫, imenujemo dobro ▫$n-[p]$▫barvanje grafa ▫$G$▫. Najmanjše naravno število, za katero obstaja dobro ▫$n-[p]$▫barvanje grafa ▫$G$▫, ▫$chi_p(G)$▫, imenujemo uteženo kromatično število grafa ▫$G$▫. Iskanje uteženega kromatičnega števila za inducirane podgrafe trikotniške mreže (imenovane heksagonalni grafi) ima aplikacije v celičnih mrežah. Uteženo kromatično število grafa ▫$G$▫, ▫$omega_p(G)$▫, je enako maksimalni uteži klike grafa ▫$G$▫, kjer utež klike predstavlja vsoto uteži njenih točk. McDiarmid in Reed (2000) sta postavila domnevo, da za poljuben heksagonalen graf brez trikotnikov velja ▫$chi_p(G) le (9/8)omega_p(G) + C$▫. V članku je podan algoritem, ki poda dobro ▫$7-[3]$▫barvanje poljubnega heksagonalnega grafa brez trikotnikov, ki aplicira neenakost ▫$chi_p(G) le (7/6)omega_p(G) + C$▫. Naš rezultat podaja krajšo alternativo induktivnega dokaza Haveta (2001) in izboljša kratek dokaz Sudepa in Vishwanathana (2005), ki sta dokazala obstoj ▫$14-[6]$▫barvanja. (Omeniti je potrebno, da v sklopu našega dokaza uporabimo izrek o štirih barvah.) Vsi koraki algoritma so linearni glede na ▫$|V(G)|$▫, razen 4-barvanje ravninskega grafa. Novi pristop lahko v prihodnje pripomore k dokazovanju domneve McDiarmida in Reeda (2000).
Keywords:matematika, teorija grafov, aproksimacijski algoritem, barvanje grafov, dodeljevanje frekvenc, celične mreže, mathematics, graph algorithm, graph theory, approximation algorithm, graph coloring, frequency planning, cellular networks
Year of publishing:2012
Number of pages:Str. 181-187
Numbering:Vol. 312, iss. 1
UDC:519.17
ISSN on article:0012-365X
COBISS_ID:6917907 Link is opened in a new window
NUK URN:URN:SI:UM:DK:IOFJJWSU
Views:423
Downloads:50
Metadata:XML RDF-CHPDL DC-XML DC-RDF
Categories:Misc.
:
  
Average score:(0 votes)
Your score:Voting is allowed only for logged in users.
Share:AddThis
AddThis uses cookies that require your consent. Edit consent...

Hover the mouse pointer over a document title to show the abstract or click on the title to get all document metadata.

Record is a part of a proceedings

Title:Algebraic graph theory
COBISS.SI-ID:16067161 New window

Record is a part of a journal

Title:Discrete Mathematics
Shortened title:Discrete math.
Publisher:North-Holland
ISSN:0012-365X
COBISS.SI-ID:1118479 New window

Secondary language

Language:English
Title:Enostavnejše večbarvanje heksagonalnih grafov brez trikotnikov
Abstract:Given a graph ▫$G$▫ and a demand function ▫$p colon V(G)to mathbb{N}$▫, a proper ▫$n-[p]$▫coloring is a mapping ▫$f colon V(G)to 2^{{1,.,n}}$▫ such that ▫$|f(v)| ge p(v)$▫ for every vertex ▫$v in V(G)$▫ and ▫$f(v) cap f(u) = emptyset$▫ for any two adjacent vertices ▫$u$▫ and ▫$v$▫. The least integer ▫$n$▫ for which a proper ▫$n-[p]$▫coloring exists, ▫$chi_p(G)$▫, is called multichromatic number of ▫$G$▫. Finding multichromatic number of induced subgraphs of the triangular lattice (called hexagonal graphs) has applications in cellular networks. Weighted clique number of a graph ▫$G$▫, ▫$omega_p(G)$▫, is the maximum weight of a clique in ▫$G$▫, where the weight of a clique is the total demand of its vertices. McDiarmid and Reed (2000) conjectured that ▫$chi_p(G) le (9/8)omega_p(G)+C$▫ for triangle-free hexagonal graphs, where ▫$C$▫ is some absolute constant. In this article, we provide an algorithm to find a ▫$7-[3]$▫coloring of triangle-free hexagonal graphs (that is, when ▫$p(v) = 3$▫ for all ▫$v in V(G)$▫), which implies that ▫$chi_p(G) le (7/6)omega_p(G) + C$▫. Our result constitutes a shorter alternative to the inductive proof of Havet (2001) and improves the short proof of Sudeep and Vishwanathan (2005), who proved the existence of a ▫$14-[6]$▫coloring. (It has to be noted, however, that our proof makes use of the 4-color theorem.) All steps of our algorithm take time linear in ▫$|V(G)|$▫, except for the 4-coloring of an auxiliary planar graph. The new techniques may shed some light on the conjecture of McDiarmid and Reed (2000).


Comments

Leave comment

You have to log in to leave a comment.

Comments (0)
0 - 0 / 0
 
There are no comments!

Back
Logos of partners University of Maribor University of Ljubljana University of Primorska University of Nova Gorica