| | SLO | ENG | Cookies and privacy

Bigger font | Smaller font

Show document

Title:Vodenje plovnosti objektov s stisljivim kompenzatorjem plovnosti
Authors:Valenko, Darko (Author)
Golob, Marjan (Mentor) More about this mentor... New window
Files:.pdf DOK_Valenko_Darko_2015.pdf (13,26 MB)
MD5: 4B4D8CE02CC0E7CA5128B3C2E41174A0
 
Language:Slovenian
Work type:Doctoral dissertation (mb31)
Typology:2.08 - Doctoral Dissertation
Organization:FERI - Faculty of Electrical Engineering and Computer Science
Abstract:V doktorski nalogi obravnavamo problematiko vodenja potapljača s kompletno pripadajočo opremo za avtonomno potapljanje. Vodenje izvaja prototipna naprava, ki smo jo razvili, s pripadajočimi algoritmi in senzorskimi sistemi. Pri tem je pomembno, da je takšen sistem možno priključiti na različno obstoječo komercialno potapljaško opremo in jo s tem modernizirati v razne namene. Najpomembnejši kriteriji pri vodenju so zagotavljanje varnosti, avtomatizacija krmiljenja ventilov ter zmanjšanje porabe zraka vodenja pri tem opravilu na minimalno sprejemljivo mero. Podrobno smo raziskali sistem potapljača ter zapisali matematični model, ki zajema pripadajoče krmilne ventile. Pri tem smo posebej obravnavali dihanje in gibanje potapljača, saj je njun vpliv še posebej pomemben pri optimalnem vodenju. Nato smo razvili algoritme ocenjevalnikov, ki pomembno prispevajo k ocenjevanju dihanja, plavanja ter oceni plovnosti celotnega sistema potapljača. Ocenjevalnik dihanja podaja ključne informacije o trenutnem režimu dihanja potapljača, o volumnu vdihanega/izdihanega zraka ter napoveduje čas naslednjega vdiha. Ocenjevalnik volumna zraka stisljivega kompenzatorja plovnosti podaja pomembne informacije o tem, kakšno je trenutno stanje plovnosti sistema. Ocenjevalnik gibanja ugotavlja režime plavanja potapljača in zna razlikovati nenadne gibe, običajno plavanje in močne gibe potapljača. Nadalje smo razvili odločitveno funkcijo, ki povezuje regulator, omenjene ocenjevalnike ter senzorske sisteme. Odločitvena funkcija upošteva razne pogoje, v katerih se potapljač znajde in na ustrezen način odloča, kako bodo delovali krmilni signali regulatorja. Matematični model, ocenjevalnik dihanja, ocenjevalnik gibanja, ocenjevalnik volumna ter prototipno napravo smo vrednotili na standardiziranih programskih okoljih, simuliranih realnih okoljih, kontroliranih realnih okoljih ter realnih okoljih. Sistem so prav tako preizkusili različno izkušeni potapljači, in sicer od amaterskega do profesionalnega. Vpliv posameznih prispevkov ocenjevalnikov smo natančno prikazali ob različnih pogojih in ugotovili, da le-ti bistveno izboljšajo obstoječe načine vodenja potapljača s kompletno pripadajočo opremo za avtonomno potapljanje.
Keywords:plovnost, vodenje, potapljač, matematični model, vgrajeni sistemi, ocenjevalniki
Year of publishing:2015
Publisher:D. Valenko]
Source:[Maribor
UDC:004.942:681.883.064(043.3)
COBISS_ID:277893376 New window
NUK URN:URN:SI:UM:DK:50N4EMAT
Views:1281
Downloads:102
Metadata:XML RDF-CHPDL DC-XML DC-RDF
Categories:KTFMB - FERI
:
  
Average score:(0 votes)
Your score:Voting is allowed only for logged in users.
Share:AddThis
AddThis uses cookies that require your consent. Edit consent...

Hover the mouse pointer over a document title to show the abstract or click on the title to get all document metadata.

Secondary language

Language:English
Title:Object buoyancy control with a compressible buoyancy compensator
Abstract:The present doctoral thesis discusses the issue of depth control performed by a diver in a scuba diving environment, equipped with all necessary diving gear. The depth control is preformed by a prototype device that has been developed with the corresponding algorithms and sensor systems. It is important that such a system can be attached to different existing commercial diving equipment and in the same way updated for various necessary purposes. The most important criteria for performing diving depth control are the security provision, control valve automation, and minimizing air consumption during the depth control. A detailed study was carried out on the applied diver’s system, followed by a development of mathematical models for control valves. The examination also included the diver’s breathing and swimming, since it significantly influences the optimal control. Furthermore, algorithms for the diver’s breathing, swimming, and buoyancy estimation have been developed. The breathing estimator provides key information about the diver’s current breathing pattern, phase, and volume, as well as predicts the time of the next breath in. The buoyancy estimator gives key information about the current state of the diver’s buoyancy system. The swimming estimator provides an input on the diver’s specific swimming mode and can distinguish between a sudden move, swimming and strong move. Finally, a decision algorithm was developed, which connects the regulator, all estimators, and the sensor systems. The decision algorithm tracks different diving conditions and reacts correspondingly by estimating the most appropriate operational mode of the regulator’s control signals. The mathematical model, the breathing, swimming, and buoyancy estimator, as well as the prototype device were evaluated within standardized programming environments, simulated real life environments, controlled real life environments and actual real life environments. The system was also tested by differently experienced divers, ranging from amateurs to professionals. The impact of individual estimation outputs was studied carefully while set in various conditions. The final outcome of the study shows that such outputs improve the current depth control of the diver and significantly reduce air consumption for the diver while performing the depth control.
Keywords:buoyancy, control, diver, mathematical model, embedded systems, estimators


Comments

Leave comment

You have to log in to leave a comment.

Comments (0)
0 - 0 / 0
 
There are no comments!

Back
Logos of partners University of Maribor University of Ljubljana University of Primorska University of Nova Gorica