| | SLO | ENG | Cookies and privacy

Bigger font | Smaller font

Show document Help

Title:OPTIMIZACIJA PROCESNIH PARAMETROV PRI VODENJU INJEKCIJSKEGA BRIZGANJA Z UPORABO INTELIGENTNIH METOD
Authors:ID Kusić, Dragan (Author)
ID Svečko, Rajko (Mentor) More about this mentor... New window
Files:.pdf DR_Kusic_Dragan_2014.pdf (15,04 MB)
MD5: 694B6CB45C02C2D5CAA974524E6C7469
 
Language:Slovenian
Work type:Dissertation
Typology:2.08 - Doctoral Dissertation
Organization:FERI - Faculty of Electrical Engineering and Computer Science
Abstract:V doktorski disertaciji je predstavljena metoda za optimiziranje procesnih parametrov v procesu injekcijskega brizganja termoplastičnih materialov, ki je implementirana v razvitem inteligentnem sistemu ΔC-3. Predlagana metoda optimizacije procesnih parametrov temelji na kombiniranem pristopu treh metod umetne inteligence, kjer so vsa pravila in dejstva, ki so bila osvojena med množičnimi eksperimentalnimi testiranji na dveh brizgalnih strojih, implementirana tako v bazi znanja kot tudi v podatkovni bazi in so tudi prenosljiva. Ustrezno vrednotenje robustnosti tega proizvodnega procesa je prikazano na primeru nelinearnega matematičnega modela, kjer je izvedena robustna sinteza vodenja hitrosti brizgalnega polža za načrtan robustni regulator po Glover-McFarlanovi metodi ob upoštevanju vpliva motenj in aditivnega modela odstopanj v okolju Matlab/Simulink. V nadaljevanju smo izvedli obsežne eksperimentalne študije na treh izbranih termoplastičnih materialih, kjer smo analizirali vpliv procesnih parametrov na prečni in vzdolžni skrček kot tudi na kot zvijanja testnih ploščic skupaj z meritvijo signalov akustične emisije. Z neporušitveno metodo smo dokazali njeno praktično uporabnost v tem proizvodnem procesu na primeru iskanja razpok na gravurnih orodnih vložkih in detekciji vlažnosti termoplastičnih materialov. Za podrobnejšo analizo zajetih signalov AE v časovno frekvenčnem prostoru smo uporabili Gaborjevo valčno transformacijo. Prav tako so bile izvedene tudi študije zapolnjevanja testnih ploščic v programskem paketu Moldflow, ki so bile osnova za izvedbo kasnejših morfoloških preiskav z vrstičnim elektronskim mikroskopom na površini testnih ploščic v področju slabe orientacije steklenih vlaken.
Keywords:optimizacija, procesni parametri, robustno vodenje, injekcijsko brizganje, skrčki, zvijanje, umetna inteligenca, neporušitveno testiranje, akustična emisija, valčna transformacija
Place of publishing:[S. l.
Publisher:D. Kusić]
Year of publishing:2014
PID:20.500.12556/DKUM-43890 New window
UDC:621.316.7:681.5(043.3)
COBISS.SI-ID:273062144 New window
NUK URN:URN:SI:UM:DK:FCRV3GJB
Publication date in DKUM:21.03.2014
Views:3032
Downloads:229
Metadata:XML DC-XML DC-RDF
Categories:KTFMB - FERI
:
Copy citation
  
Average score:(0 votes)
Your score:Voting is allowed only for logged in users.
Share:Bookmark and Share


Hover the mouse pointer over a document title to show the abstract or click on the title to get all document metadata.

Secondary language

Language:English
Title:OPTIMIZATION OF PROCESS PARAMETERS THROUGH INJECTION MOLDING CONTROL USING INTELLIGENT METHODS
Abstract:This doctoral dissertation presents a method for optimizing process parameters in the injection molding process of thermoplastic materials, which is implemented in the developed intelligent system ΔC-3. The proposed method is based on a combined approach containing three methods of artificial intelligence where all the rules and facts, conquered during massive experimental tests on two injection molding machines, are implemented within the knowledge base as well as in the database, and are also transferable. Proper evaluation of the robustness of this production process is shown using the case of a non-linear mathematical model, where a robust control synthesis of injection screw speed for a designed robust controller according to the Glover-McFarlane method, was taken into account regarding the impact of interferences and additive model variations within the Matlab/Simulink environment. During the following, we carried out extensive experimental studies on three selected thermoplastic materials, where we analyzed the effect of process parameters on transverse and longitudinal shrinkages as well on the warping angles of test specimens, together with the measurements of acoustic emission signals. We proved that this non-destructive method would provide practical usages during the production processes in cases of searching for cracks on engraving tools' inserts and humidity detection in thermoplastic materials. We used Gabor wavelet transformation for a more detailed analysis of the captured AE signals within the time-frequency space. In addition the filling studies of the test specimens were carried out using the Moldflow software package, and were the bases for the subsequent morphological investigations using a scanning electron microscope on the surfaces of the test specimens within the areas of poor orientation regarding the glass fibers.
Keywords:optimization, process parameters, robust control, injection molding, shrinkage, warping, artificial intelligence, non-destructive testing, acoustic emission, wavelet transformation


Comments

Leave comment

You must log in to leave a comment.

Comments (0)
0 - 0 / 0
 
There are no comments!

Back
Logos of partners University of Maribor University of Ljubljana University of Primorska University of Nova Gorica