| | SLO | ENG | Cookies and privacy

Bigger font | Smaller font

Show document

Title:METODA MEJNIH PAROV ZA UČENJE UMETNIH NEVRONSKIH MREŽ
Authors:Ploj, Bojan (Author)
Zorman, Milan (Mentor) More about this mentor... New window
Files:.pdf DR_Ploj_Bojan_2013.pdf (3,61 MB)
MD5: DD36C7A88CFE8CE98AAAEF9D7A9391CC
 
Language:Slovenian
Work type:Dissertation (m)
Typology:2.08 - Doctoral Dissertation
Organization:FERI - Faculty of Electrical Engineering and Computer Science
Abstract:Disertacija opisuje novo metodo strojnega učenja - metodo mejnih parov. Opisana metoda je namenjena učenju večslojnega perceptrona, nevronske mreže s povezavami naprej, ki služi za prepoznavanje oziroma razvrščanje v razrede. Uvodoma je opisana problematika strojnega učenja, nevronska mreža večslojni perceptron (MLP) in njena klasična učna metoda backpropagation s poudarkom na njenih slabostih. V jedru disertacije najprej analiziramo lastnosti naučenega MLP. Pri tem se osredotočimo na učne vzorce v bližini meje in definiramo pojem mejnega para. Sledi analiza lastnosti mejnih parov, ki je podlaga za novo metodo razšumljanja, za novo metodo rojenja, in novo metodo konstruktivnega učenja. To učenje je lahko statično (offline), inkrementalno, dinamično (online) in s postopnim pozabljanjem starih učnih podatkov. Razšumljanje, rojenje in učenje smo testirali s simulacijo na računalniku. V ta namen smo uporabljali uveljavljene nabore učnih podatkov (zaradi primerljivosti rezultatov), realne nabore učnih podatkov (kot dokaz uporabnosti), kot tudi umetne (zaradi prilagajanja učnih podatkov našim potrebam). Primerjalna analiza je pokazala, da ima metoda mejnih parov nekaj dobrih lastnosti. Z njo smo uspešno razšumljali in rojili podatke, iskali značilke ter razvrščali podatke. Rezultati raziskav kažejo, da je obravnavana metoda zanesljiva, natančna, konstruktivna in odporna na šum in prekomerno učenje.
Keywords:umetna inteligenca, strojno učenje, konstruktivna nevronska mreža, algoritem, večslojni perceptron, metoda mejnih parov
Year of publishing:2013
Publisher:B. Ploj]
Source:[Maribor
UDC:004.032.26:004.8(043.3)
COBISS_ID:17065238 New window
NUK URN:URN:SI:UM:DK:AMQ3PWZP
Views:1745
Downloads:232
Metadata:XML RDF-CHPDL DC-XML DC-RDF
Categories:KTFMB - FERI
:
  
Average score:(0 votes)
Your score:Voting is allowed only for logged in users.
Share:AddThis
AddThis uses cookies that require your consent. Edit consent...

Hover the mouse pointer over a document title to show the abstract or click on the title to get all document metadata.

Secondary language

Language:English
Title:Border Pairs Method for the Artificial Neural Network learning
Abstract:Thesis describes a new method of machine learning - Border Pairs Method. The method described is intended for teaching Multi-Layer Perceptron - Feed-Forwarded Artificial Neural Network which is used for recognition or classification. Initially the problems of machine learning are described, as well as a description of the Multi-Layer Perceptron Neural Network and a description of Backpropagation, of its classical teaching method with an emphasis on its weaknesses. Firstly, in the core of the thesis we analyze the properties of trained MLP. In doing so, we focus on the learning patterns near the border and we define the concept of the Border Pair. Furthermore, the analysis of the properties of the border pairs, which is the basis of a new method of the noise reduction, of the clustering and a new method of constructive learning follow. This learning can be offline, incremental, online and with gradually forgetting the old learning patterns (unlearning). Noise cancellation, clustering and learning have been tested by simulation on a computer. Towards the end, we used the established sets of learning data (thanks to the comparability of results), real learning data sets (as a proof of the usability) as well as synthetic ones (due to the adaptation of learning data to our needs). The comparative analysis showed that the Border Pairs Method has some good characteristics. With it we have successfully reduced the noise, clustered the data, searched the features and classify the data. Results show that the researched method is reliable, accurate, constructive and insensitive to noise and overfitting.
Keywords:artificial intelligence, machine learning, constructive neural network, algorithm, multilayer perceptron, border pairs method


Comments

Leave comment

You have to log in to leave a comment.

Comments (0)
0 - 0 / 0
 
There are no comments!

Back
Logos of partners University of Maribor University of Ljubljana University of Primorska University of Nova Gorica