Your browser does not allow JavaScript!
JavaScript is necessary for the proper functioning of this website. Please enable JavaScript or use a modern browser.
|
|
SLO
|
ENG
|
Cookies and privacy
DKUM
EPF - Faculty of Business and Economics
FE - Faculty of Energy Technology
FERI - Faculty of Electrical Engineering and Computer Science
FF - Faculty of Arts
FGPA - Faculty of Civil Engineering, Transportation Engineering and Architecture
FKBV - Faculty of Agriculture and Life Sciences
FKKT - Faculty of Chemistry and Chemical Engineering
FL - Faculty of Logistic
FNM - Faculty of Natural Sciences and Mathematics
FOV - Faculty of Organizational Sciences in Kranj
FS - Faculty of Mechanical Engineering
FT - Faculty of Tourism
FVV - Faculty of Criminal Justice and Security
FZV - Faculty of Health Sciences
MF - Faculty of Medicine
PEF - Faculty of Education
PF - Faculty of Law
UKM - University of Maribor Library
UM - University of Maribor
UZUM - University of Maribor Press
COBISS
Faculty of Business and Economic, Maribor
Faculty of Agriculture and Life Sciences, Maribor
Faculty of Logistics, Celje, Krško
Faculty of Organizational Sciences, Kranj
Faculty of Criminal Justice and Security, Ljubljana
Faculty of Health Sciences
Library of Technical Faculties, Maribor
Faculty of Medicine, Maribor
Miklošič Library FPNM, Maribor
Faculty of Law, Maribor
University of Maribor Library
Bigger font
|
Smaller font
Introduction
Search
Browsing
Upload document
Statistics
Login
First page
>
Show document
Show document
Title:
ANALIZA LASTNOSTI USPEŠNIH ŠTUDENTOV S PODATKOVNIM RUDARJENJEM
Authors:
ID
Kompara, Marko
(Author)
ID
Podgorelec, Vili
(Mentor)
More about this mentor...
Files:
UNI_Kompara_Marko_2012.pdf
(3,02 MB)
MD5: 57752F78B94C4AA1739405B02963DF08
PID:
20.500.12556/dkum/e2193b31-c860-4e3f-8b12-7cbeb8119dcd
Language:
Slovenian
Work type:
Bachelor thesis/paper
Typology:
2.11 - Undergraduate Thesis
Organization:
FERI - Faculty of Electrical Engineering and Computer Science
Abstract:
V nalogi poskušamo odkriti povezave med lastnostmi študentov in njihovim študijskim uspehom. Opisan je celoten proces zbiranja ter analize podatkov in relacij, ki vplivajo na študijski uspeh posameznika. Začnemo s kratkimi navodili o sestavi ankete in nadaljujemo s sestavo svoje. Pridobljene podatke najprej analiziramo z uporabo statistike. Uporabljene metode na kratko opišemo in jih nato izvedemo nad zbranimi podatki. Proces izvajanja, ki je opravljen v programu IBM SPSS Statistics, je tudi predstavljen. Nazadnje uporabimo podatke v podatkovnem rudarjenju. V predstavitvi podatkovnega rudarjenja se posebej posvetimo nalogi klasifikacije in njenim tehnikam. V orodju Weka z odločitvenimi drevesi ugotavljamo povezanost med karakteristikami študentov in njihovim študijskim uspehom.
Keywords:
podatkovno rudarjenje
,
statistična analiza
,
SPSS
,
Weka
Place of publishing:
Maribor
Publisher:
[M. Kompara]
Year of publishing:
2012
PID:
20.500.12556/DKUM-37783
UDC:
004.6(043.2)
COBISS.SI-ID:
16504598
NUK URN:
URN:SI:UM:DK:CLQ1X35M
Publication date in DKUM:
27.11.2012
Views:
1860
Downloads:
441
Metadata:
Categories:
KTFMB - FERI
Cite this work
Plain text
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
Copy citation
Average score:
(0 votes)
Your score:
Voting is allowed only for
logged in
users.
Share:
Hover the mouse pointer over a document title to show the abstract or click on the title to get all document metadata.
Secondary language
Language:
English
Title:
ANALYZING STUDENTS' SUCCESS FACTORS WITH DATA MINING
Abstract:
In the assignment we try to discover correlations between students’ characteristics and their academic success. We describe the whole process of collecting and analyzing data and relations which impact the students’ success. We start with short instructions on how to build a survey and continuing to build our own. Collected data is first analyzed with statistics. Used methods are shortly described and afterwards executed in a program called IBM SPSS Statistics. Finally the data is used in data mining, presentation of which is mainly focused on the classification task and its techniques. Using Weka we built decision trees to find out if there are any connections between students’ characteristics and their study success.
Keywords:
data mining
,
statistical analysis
,
SPSS
,
Weka
Comments
Leave comment
You must
log in
to leave a comment.
Comments (0)
0 - 0 / 0
There are no comments!
Back