| | SLO | ENG | Cookies and privacy

Bigger font | Smaller font

Show document

Title:Vpliv postopkov odstranjevanja hlapljivih organskih snovi na emisije pri proizvodnji izolacij
Authors:Kompolšek, Katja (Author)
Hriberšek, Matjaž (Mentor) More about this mentor... New window
Ravnik, Jure (Co-mentor)
Files:URL MAG_Kompolsek_Katja_2012.pdf (17,03 MB)
MD5: D79923C29760C8F1DDEA4429D8768CD9
 
Language:Slovenian
Work type:Master's thesis (m2)
Typology:2.09 - Master's Thesis
Organization:FS - Faculty of Mechanical Engineering
Abstract:Izhodišča: Namen raziskave je bil najti najprimernejših postopek čiščenja hlapnih organskih spojin iz odpadnih plinov pri proizvodnji izolacij. Kvantitativno analizirati učinkovitost odstranjevanja hlapnih organskih spojin ter na osnovi inženirskih preračunov učinkovitosti čistilnih postopkov dobiti vhodne podatke. Le-te uporabiti kot podatek emisij v modelih razširjenja onesnaževal v ozračju ter raziskati vpliv proizvodnje na okolje in napovedati koncentracije hlapnih organskih spojin v okolici tovarne. Metoda dela: Za čiščenje hlapnih organskih spojin iz odpadnih plinov pri proizvodnji izolacij se je izkazala kot najprimernejša rešitev regenerativno termična oksidacija. Na podlagi izkustvenih podatkov iz člankov, pridobljenih z meritvami na realnih napravah, smo naredili izračune. Podano imamo izmerjeno koncentracijo celokupnega organskega ogljika (TOC) [mg/Nm3] in preračunano emisijo TOC [g/h] pred čiščenjem. Obe proučevani spremenljivki merimo v 3 meritvah, na osnovi 3 izmerjenih vrednosti za vsako spremenljivko izračunamo aritmetično sredino. Postopek čiščenja ima 95 do 99 % -ni učinek. Zanimalo nas je, kolika je pričakovana koncentracija TOC in emisija TOC po čiščenju. Za prikaz razširjanja onesnaževal smo uporabili dva modela. Med poenostavljenimi modeli smo uporabili Gaussov disperzijski model ISC-ISCST3 (EPA, 1995, 1995, Lakes Environmental 2006). Z namenom primerjave in kot dopolnilo smo k rezultatom Gaussovega modela za podroben vpogled širjenja onesnaževal med kompleksnimi modeli izbrali Lagrangeev paketni model CALPUFF, ki ga je razvila skupina znanstvenikov na področju ozračja (ASG - The Atmospheric Studies Group) in ga je sprejela Ameriška agencija za varstvo okolja (U.S. Environmental Protection Agency, U.S. EPA). Meteorološke podatke za oba disperzijska modela smo pridobili od Agencije Republike Slovenije za okolje. Rezultati: Na 6 x 6 kilometrov velikem območju z realno topografijo reliefa smo modelirali razširjanje odpadnih plinov. Modeliranje disperzije smo izvedli za tri iteracije. Prva iteracija je obstoječe stanje pred obnovo, druga iteracija je s 95 % -nim učinkom čiščenja dimnih plinov ter tretja iteracija z 99 % -nim učinkom čiščenja dimnih plinov. Emisije TOC za prvo iteracijo za posamezne izpuste se gibljejo od 0,0093 g/s do 0,3877 g/s, emisije TOC za drugo iteracijo od 0,00046 g/s do 0,095 g/s, emisije TOC za tretjo iteracijo pa od 0,00008 g/s do 0,095 g/s. Vir onesnaženja je industrija (proizvodnja izolacij), gre za t.i. točkast izvor onesnaževanja. V modelu AERMOD smo uporabili tri leta urnih meteoroloških podatkov. Izključno z namenom primerjave in kot dopolnilo k tem rezultatom pa smo za AERMOD in CALPUFF model zbrali še za štiri mesece meteoroloških podatkov. Iz rože vetrov razberemo dominantne smeri vetra. Rezultati obeh modelov kažejo, da se onesnaževalo razširja v dominantni smeri vetra. Sklep: Modeliranje onesnaževal v zraku daje odgovore na vzroke in mehanizme onesnaževanja, predvsem pa odgovor na prostorsko in časovno razporeditev onesnaženja. Dandanes so zaradi svoje preprostosti in cenovne dostopnosti najpogostejši disperzijski modeli tako imenovani Gaussovi modeli. V ozadju teh modelov je veliko poenostavitev in predpostavk v obliki in obnašanju oblaka onesnaževala. Kljub vsemu pa ti modeli dajejo uporabne in fizikalno upravičene rezultate. Dobro dopolnilo k rezultatom Gaussovega modela pa so za podroben vpogled v dogajanje širjenja onesnaževal v ozračju t.i. kompleksni modeli (npr. Lagrangeev disperzijski model). Le-te je smiselno uporabiti, ko se meteorološki parametri spreminjajo v območju, ki ga simuliramo, ter kadar so izvor in mesta, kjer nas koncentracija zanima, postavljeni v zelo razgibanem terenu. Pa tudi takrat, ko imamo daljša obdobja brezvetrja. Slovenija zahteva zaradi svoje geomorfologije uporabo najboljših modelov za spremljanje onesnaženja. Vemo pa, da tudi najboljši modeli ne morajo točno napovedati koncentracije na določenem mestu. Natančnost modela omejujejo na eni str
Keywords:proizvodnja izolacij, hlapne organske spojine, kakovost zraka, odstranjevanje plinastih nečistoč iz odpadnih plinov, disperzijski model
Year of publishing:2012
Publisher:[K. Kompolšek]
Source:Maribor
UDC:66.074.8:536.2(043)
COBISS_ID:16143382 New window
NUK URN:URN:SI:UM:DK:FFUEP4S6
Views:1976
Downloads:99
Metadata:XML RDF-CHPDL DC-XML DC-RDF
Categories:KTFMB - FS
:
  
Average score:(0 votes)
Your score:Voting is allowed only for logged in users.
Share:AddThis
AddThis uses cookies that require your consent. Edit consent...

Hover the mouse pointer over a document title to show the abstract or click on the title to get all document metadata.

Secondary language

Language:English
Title:The impact of removal procedures of the volatile organic compounds on emissions regarding the production of isolations
Abstract:Starting points: The purpose of this research was to find the most appropriate cleaning procedure of volatile organic compounds from the flue gas at the production of isolation. To analize the effectiveness of eliminating volatile organic compounds quantitativily and on the basis of engineers' calculated effects of cleaning procedures, get the entrance data. This data would be used as emission information in the models that simulates air pollution from industrial source, there would be a research on how the production influences the environment and predict the concentration of volatile organic compounds in the factory surroundings. Working procedure: To clean volatile organic compounds from the flue gas at production of isolations, the most appropriate solution would be regenerative thermal oxidation (RTO). On the basis of empirical data from the articles, acquired and measured with real instruments, there have been some calculations. There is a concentration of total organic carbon (TOC) (mg/Nm3) measured out and emission before cleaning is calculated (TOC) (g/h). Both variations examined are measured with three measures and on the basis of those three measured values, there is arithmetical mean counted up for each variation. The cleaning procedure takes effect of 95 to 99 %. We were interested in expected concentration (TOC) and emission (TOC) after the cleaning. For simulation of air pollution from industrial source , two models have been used. Among the simplified models the Gaussian dispersion model has been used ISC - ISCST3 (EPA, 1995, 1995, Lakes Environmental 2006). In order to compare and as addition to results of Gaussian model for detailed simulation of air pollution, we have chosen, among complex models, Lagrangian puff model CALPUFF, which was developed by a group of scientists on the field of atmosphere (ASG - The Atmospheric Studies Group), and the model was accepted by the United States Environmental Protection Agency (U. S. EPA). Meteorological data for both dispersion models have been acquired at Slovenian Environment Agency (ARSO). Results: Within the limits of 6 by 6 kilometers, with real relief topography, the dispersing of flue gas has been moulded. The modeling of dispersion has been carried out for three different iterations. The first iteration is the existent state before renewal, the second iteration goes with 95 % effect of flue gas cleaning, the third iteration has 99 % effect of flue gas cleaning. TOC emissions for the first iteration, regarding the separate emissions, move from 0,00939 g/s up to 0,3877 g/s, TOC emissions for the second iteration move from 0,00046 g/s to 0,095 g/s, TOC emissions for the third iteration move from 0,00008 g/s to 0,095. The pollution source is industry (production of isolations), it is so called point source. In the AERMOD model we used three years of prompt meteorological data. Exclusively for the purpose of comparison and as an addition to those results, we chose four month meteorological data for AERMOD and CALPUFF. From the wind rose the dominant wind directions are evident. The results of both models show, that air pollution is dispersing toward the dominant wind direction. Conclusion: The simulation of air pollution gives the answers about the pollution causes and mechanisms, and above all, the answer for space and time pollution arrangement. Nowdays the most often dispersion models are Gaussian models, because of their simplicity and price accessibility. In the background of these models there are a lot of simplifications and presumptions in form and conduct of a plume. In spite of all, these models give applicable and physical legitimate results. Good addition to the Gaussian model results are so called complex models, for the purpose of detailed view for air pollution simulation (for example Lagrangian dispersion model). These models are good to be used, when the meteorological parameters have changed in the simulated area and when the source and the places concerned, are placed in a very agitated ground. And also when there is a longer period of
Keywords:the production of isolations, volatile organic compounds, air quality, elimination of gas impurity from the flue gas, dispersion model


Comments

Leave comment

You have to log in to leave a comment.

Comments (0)
0 - 0 / 0
 
There are no comments!

Back
Logos of partners University of Maribor University of Ljubljana University of Primorska University of Nova Gorica