Naslov: | Comprehensive decision tree models in bioinformatics |
---|
Avtorji: | ID Štiglic, Gregor (Avtor) ID Kocbek, Simon (Avtor) ID Pernek, Igor (Avtor) ID Kokol, Peter (Avtor) |
Datoteke: | PLoS_ONE_2012_Stiglic_et_al._Comprehensive_Decision_Tree_Models_in_Bioinformatics.PDF (524,39 KB) MD5: 178714A3D213A7249931984D69E5E830 PID: 20.500.12556/dkum/a5749aeb-74f9-42e8-9427-a9b6284d08ca
http://dx.plos.org/10.1371/journal.pone.0033812
|
---|
Jezik: | Angleški jezik |
---|
Vrsta gradiva: | Znanstveno delo |
---|
Tipologija: | 1.01 - Izvirni znanstveni članek |
---|
Organizacija: | FZV - Fakulteta za zdravstvene vede
|
---|
Opis: | Purpose Classification is an important and widely used machine learning technique in bioinformatics. Researchers and other end-users of machine learning software often prefer to work with comprehensible models where knowledge extraction and explanation of reasoning behind the classification model are possible. Methods This paper presents an extension to an existing machine learning environment and a study on visual tuning of decision tree classifiers. The motivation for this research comes from the need to build effective and easily interpretable decision tree models by so called one-button data mining approach where no parameter tuning is needed. To avoid bias in classification, no classification performance measure is used during the tuning of the model that is constrained exclusively by the dimensions of the produced decision tree. Results The proposed visual tuning of decision trees was evaluated on 40 datasets containing classical machine learning problems and 31 datasets from the field of bioinformatics. Although we did notexpected significant differences in classification performance, the resultsdemonstrate a significant increase of accuracy in less complex visuallytuned decision trees. In contrast to classical machine learning benchmarking datasets, we observe higher accuracy gains in bioinformatics datasets. Additionally, a user study was carried out to confirm the assumptionthat the tree tuning times are significantly lower for the proposed method in comparison to manual tuning of the decision tree. Conclusions The empirical results demonstrate that by building simple models constrained by predefined visual boundaries, one not only achieves good comprehensibility, but also very good classification performance that does not differ from usually more complex models built using default settings of the classical decision tree algorithm. In addition, our study demonstrates the suitability of visually tuned decision trees for datasets with binary class attributes anda high number of possibly redundant attributes that are very common in bioinformatics. |
---|
Ključne besede: | decision tree models, machine learning technique, visual tuning, bioinformatics |
---|
Status publikacije: | Objavljeno |
---|
Verzija publikacije: | Objavljena publikacija |
---|
Leto izida: | 2012 |
---|
Št. strani: | str. 1-13 |
---|
Številčenje: | Letn. 7, št. 3 |
---|
PID: | 20.500.12556/DKUM-30867  |
---|
ISSN: | 1932-6203 |
---|
UDK: | 004.8:575.112 |
---|
COBISS.SI-ID: | 1788068  |
---|
DOI: | 10.1371/journal.pone.0033812  |
---|
ISSN pri članku: | 1932-6203 |
---|
NUK URN: | URN:SI:UM:DK:GKI03QCQ |
---|
Datum objave v DKUM: | 05.06.2012 |
---|
Število ogledov: | 2305 |
---|
Število prenosov: | 356 |
---|
Metapodatki: |  |
---|
Področja: | Ostalo
|
---|
:
|
Kopiraj citat |
---|
| | | Skupna ocena: | (0 glasov) |
---|
Vaša ocena: | Ocenjevanje je dovoljeno samo prijavljenim uporabnikom. |
---|
Objavi na: |  |
---|
Postavite miškin kazalec na naslov za izpis povzetka. Klik na naslov izpiše
podrobnosti ali sproži prenos. |