| | SLO | ENG | Piškotki in zasebnost

Večja pisava | Manjša pisava

Izpis gradiva

Naslov:Comprehensive decision tree models in bioinformatics
Avtorji:Štiglic, Gregor (Avtor)
Kocbek, Simon (Avtor)
Pernek, Igor (Avtor)
Kokol, Peter (Avtor)
Datoteke:.pdf PLoS_ONE_2012_Stiglic_et_al._Comprehensive_Decision_Tree_Models_in_Bioinformatics.PDF (524,39 KB)
 
URL http://dx.plos.org/10.1371/journal.pone.0033812
 
Jezik:Angleški jezik
Vrsta gradiva:Znanstveno delo (r2)
Tipologija:1.01 - Izvirni znanstveni članek
Organizacija:FZV - Fakulteta za zdravstvene vede
Opis:Purpose Classification is an important and widely used machine learning technique in bioinformatics. Researchers and other end-users of machine learning software often prefer to work with comprehensible models where knowledge extraction and explanation of reasoning behind the classification model are possible. Methods This paper presents an extension to an existing machine learning environment and a study on visual tuning of decision tree classifiers. The motivation for this research comes from the need to build effective and easily interpretable decision tree models by so called one-button data mining approach where no parameter tuning is needed. To avoid bias in classification, no classification performance measure is used during the tuning of the model that is constrained exclusively by the dimensions of the produced decision tree. Results The proposed visual tuning of decision trees was evaluated on 40 datasets containing classical machine learning problems and 31 datasets from the field of bioinformatics. Although we did notexpected significant differences in classification performance, the resultsdemonstrate a significant increase of accuracy in less complex visuallytuned decision trees. In contrast to classical machine learning benchmarking datasets, we observe higher accuracy gains in bioinformatics datasets. Additionally, a user study was carried out to confirm the assumptionthat the tree tuning times are significantly lower for the proposed method in comparison to manual tuning of the decision tree. Conclusions The empirical results demonstrate that by building simple models constrained by predefined visual boundaries, one not only achieves good comprehensibility, but also very good classification performance that does not differ from usually more complex models built using default settings of the classical decision tree algorithm. In addition, our study demonstrates the suitability of visually tuned decision trees for datasets with binary class attributes anda high number of possibly redundant attributes that are very common in bioinformatics.
Ključne besede:decision tree models, machine learning technique, visual tuning, bioinformatics
Leto izida:2012
Št. strani:str. 1-13
Številčenje:št. 3, Letn. 7
ISSN:1932-6203
UDK:004.8:575.112
COBISS_ID:1788068 Povezava se odpre v novem oknu
DOI:10.1371/journal.pone.0033812 Povezava se odpre v novem oknu
ISSN pri članku:1932-6203
NUK URN:URN:SI:UM:DK:GKI03QCQ
Licenca:CC BY 4.0
To delo je dosegljivo pod licenco Creative Commons Priznanje avtorstva 4.0 Mednarodna
Število ogledov:1048
Število prenosov:184
Metapodatki:XML RDF-CHPDL DC-XML DC-RDF
Področja:Ostalo
:
  
Skupna ocena:(0 glasov)
Vaša ocena:Ocenjevanje je dovoljeno samo prijavljenim uporabnikom.
Objavi na:AddThis
AddThis uporablja piškotke, za katere potrebujemo vaše privoljenje.
Uredi privoljenje...

Postavite miškin kazalec na naslov za izpis povzetka. Klik na naslov izpiše podrobnosti ali sproži prenos.

Gradivo je del revije

Naslov:PloS ONE
Založnik:Public Library of Science
ISSN:1932-6203
COBISS.SI-ID:2005896 Novo okno

Sekundarni jezik

Jezik:Slovenski jezik
Ključne besede:drevo odločanja, strojno učenje, vizualno uravnavanje, bioinformatika


Komentarji

Dodaj komentar

Za komentiranje se morate prijaviti.

Komentarji (0)
0 - 0 / 0
 
Ni komentarjev!

Nazaj
Logotipi partnerjev Univerza v Mariboru Univerza v Ljubljani Univerza na Primorskem Univerza v Novi Gorici