| | SLO | ENG | Piškotki in zasebnost

Večja pisava | Manjša pisava

Izpis gradiva

Naslov:Tool cutting force modeling in ball-end milling using multilevel perceptron
Avtorji:Župerl, Uroš (Avtor)
Čuš, Franc (Avtor)
Datoteke:URL http://dx.doi.org/10.1016/j.jmatprotec.2004.04.309
 
Jezik:Angleški jezik
Vrsta gradiva:Neznano ()
Tipologija:1.01 - Izvirni znanstveni članek
Organizacija:FS - Fakulteta za strojništvo
Opis:This paper uses the artificial neural networks (ANNs) approach to evolve an efficient model for estimation of cutting forces, based on a set of input cutting conditions. A neural network algorithms are developed for use as a direct modeling method, to predict forces for ball-end milling operation. Supervised neural networks are used to successfully estimate the cutting forces developed during end milling process. The training of the networks is preformed with experimental machining data. The predictive capability of using analytical and neural network approaches are compared using statistics, which showed that neural network predictions for three cutting force components were for 4% closer to the experimental measurements, compared to 11% using analytical method. Exhaustive experimentation is conduced to develop the model and to validate it. The milling experiments prove that this model can predict accurately the cutting forces in three Cartesian directions.The force model can be used for simulation purposes and for defining threshold values in cutting tool condition monitoring system.
Ključne besede:ball end milling, cutting forces, modelling, artificial intelligence, neural networks
Leto izida:2004
UDK:621.914:004.89
COBISS_ID:8791062 Povezava se odpre v novem oknu
ISSN pri članku:0924-0136
NUK URN:URN:SI:UM:DK:YJ0GFDEG
Število ogledov:1220
Število prenosov:54
Metapodatki:XML RDF-CHPDL DC-XML DC-RDF
Področja:Ostalo
:
  
Skupna ocena:(0 glasov)
Vaša ocena:Ocenjevanje je dovoljeno samo prijavljenim uporabnikom.
Objavi na:AddThis
AddThis uporablja piškotke, za katere potrebujemo vaše privoljenje.
Uredi privoljenje...

Postavite miškin kazalec na naslov za izpis povzetka. Klik na naslov izpiše podrobnosti ali sproži prenos.

Gradivo je del revije

Naslov:Journal of materials processing technology
Skrajšan naslov:J. mater. process. technol.
Založnik:Elsevier
ISSN:0924-0136
COBISS.SI-ID:30105600 Novo okno

Sekundarni jezik

Jezik:Angleški jezik
Ključne besede:čelno frezanje, krogelno oblikovno frezalo, rezalne sile, modeliranje, nevronske mreže, umetna inteligenca


Komentarji

Dodaj komentar

Za komentiranje se morate prijaviti.

Komentarji (0)
0 - 0 / 0
 
Ni komentarjev!

Nazaj
Logotipi partnerjev Univerza v Mariboru Univerza v Ljubljani Univerza na Primorskem Univerza v Novi Gorici