| | SLO | ENG | Piškotki in zasebnost

Večja pisava | Manjša pisava

Izpis gradiva Pomoč

Naslov:A generalized neural network model of ball-end milling force system
Avtorji:ID Župerl, Uroš (Avtor)
ID Čuš, Franc (Avtor)
ID Muršec, Bogomir (Avtor)
ID Ploj, Anton (Avtor)
Datoteke:URL http://dx.doi.org/10.1016/j.jmatprotec.2005.04.036
 
Jezik:Angleški jezik
Vrsta gradiva:Neznano
Tipologija:1.01 - Izvirni znanstveni članek
Organizacija:FS - Fakulteta za strojništvo
Opis:The focus of this paper is to develop a reliable method to predict 3D cutting forces during ball-end milling process. This paper uses the artificial neural networks (ANNs) approach to evolve an generalized model for prediction of cutting forces, based on a set of input cutting conditions. A set of ten input milling parameters that have a major impact on the cutting forces was chosen to represent the machining conditions. The training of the networks is performed with experimental machining data. This approach greatly reduces the time-consuming mathematical work normally required for obtaining the cutting force expressions. The estimation performance of the network is evaluated through a detailed simulation study. The accuracy of an analytical model, which is a feasible alternative to the network, is compared to that of the network. With similar system parameter estimates for both methods, the network is found to be considerably more accurate than the analytical model. The results of model validation experiments on machining Ck45 are also reported. Experimental results demonstrate that this method can accurately estimate feed cutting force within an error of 4%. The results also indicate that when the combination of sigmoidal and gaussian transfer function were applied, the prediction accuracy of neural network is as high as 98%.
Ključne besede:end-milling, cutting forces, cutting parameters, generalized neural networks, modeling
Leto izida:2005
PID:20.500.12556/DKUM-27031 Novo okno
UDK:621.914:004.89
COBISS.SI-ID:9650966 Novo okno
ISSN pri članku:0924-0136
NUK URN:URN:SI:UM:DK:JRM2AGIF
Datum objave v DKUM:01.06.2012
Število ogledov:2435
Število prenosov:92
Metapodatki:XML RDF-CHPDL DC-XML DC-RDF
Področja:Ostalo
:
Kopiraj citat
  
Skupna ocena:(0 glasov)
Vaša ocena:Ocenjevanje je dovoljeno samo prijavljenim uporabnikom.
Objavi na:Bookmark and Share


Postavite miškin kazalec na naslov za izpis povzetka. Klik na naslov izpiše podrobnosti ali sproži prenos.

Gradivo je del revije

Naslov:Journal of materials processing technology
Skrajšan naslov:J. mater. process. technol.
Založnik:Elsevier
ISSN:0924-0136
COBISS.SI-ID:30105600 Novo okno

Sekundarni jezik

Jezik:Angleški jezik
Ključne besede:čelno frezanje, rezalne sile, rezalni parametri, modeliranje, posplošena envronska omrežja


Komentarji

Dodaj komentar

Za komentiranje se morate prijaviti.

Komentarji (0)
0 - 0 / 0
 
Ni komentarjev!

Nazaj
Logotipi partnerjev Univerza v Mariboru Univerza v Ljubljani Univerza na Primorskem Univerza v Novi Gorici