| | SLO | ENG | Cookies and privacy

Bigger font | Smaller font

Show document Help

Title:OPTIMIZACIJA DELOVANJA IZDELOVALNIH STROJEV IN SISTEMOV Z UPORABO SKUPINSKE INTELIGENCE
Authors:ID Brezovnik, Simon (Author)
ID Brezočnik, Miran (Mentor) More about this mentor... New window
ID Balič, Jože (Comentor)
Files:.pdf DR_Brezovnik_Simon_2011.pdf (12,52 MB)
MD5: C2899393DA7BCA0BF249CA938E8D0B19
PID: 20.500.12556/dkum/c70dd2e5-ed4b-4e27-afb9-c09fffe8f381
 
Language:Slovenian
Work type:Dissertation
Organization:FS - Faculty of Mechanical Engineering
Abstract:Modernizacija sodobne proizvodnje vključuje nenehno posodabljanje in integracijo najnovejših tehnologij v proizvodne sisteme. Vključevanje sodobnih tehnologij omogoča skrajševanje časa izdelave, povečanje zmogljivosti in zniževanje proizvodnih stroškov. Vzporedno z visoko stopnjo avtomatizacije sodobnih proizvodnih sistemov se povečuje tudi smotrnost individualizacije tržišča v smeri maloserijske proizvodnje. Zaradi dinamičnosti razvoja sodobnih tehnologij je učinkovito usklajevanje (t.j. optimiranje) materialnih, energetskih in informacijskih tokov še mnogo težje, kot je bilo v preteklosti. Znotraj množice vse bolj kompleksnih proizvodnih scenarijev optimalnega toka proizvodnje s klasičnimi metodami načrtovanja ni mogoče več doseči. Zaradi omenjenih razlogov je bil v doktorski disertaciji razvit optimizacijski sistem, ki ponuja inovativne rešitve optimizacije obdelovalnih, robotskih, nadzornih in montažnih sistemov z algoritmi umetne skupinske inteligence. S predlaganim pristopom je predstavljeno reševanje problemov izdelovalnih sistemov po zgledih iz narave. Algoritmi umetne skupinske inteligence omogočajo optimizacijo na samoorganizacijski način, kar daje pomembno prednost pred ostalimi optimizacijskimi metodami. V ta namen je bila opravljena preslikava naravnih zakonitosti kolonialno organiziranih bioloških organizmov v obliko matematičnih definicij in pravil, ki so bile uporabljene v optimizacijskih postopkih načrtovanja izdelovalnih strojev in sistemov. Optimizacijski sistem je sestavljen iz modula napovedovalnega sistema in modula sistema evalvacije. Proces optimizacije poteka na podlagi povratnozančnega izmenjevanja informacij med napovedjo in evalvacijo načrtovanja izdelovalnega sistema. Evalvacija napovedi načrtovanega izdelovalnega sistema se odvija v simulacijskem okolju računalniško podprtega konstruiranja, kar poveča uporabnost in prilagodljivost razvitega optimizacijskega sistema v praksi. Sistem evalvacije je neodvisen od napovedovalnega sistema, kar predstavlja univerzalen in fleksibilen pristop k inteligentnemu načrtovanju in modeliranju proizvodnih sistemov. Z uporabo razvitega univerzalnega optimizacijskega sistema predlagamo učinkovite rešitve inteligentnega načrtovanja in modeliranja naslednjih tehnoloških problemov: (i) optimizacija postavitve surovca v delovni prostor izdelovalnega sistema glede na gibljivost robotskega mehanizma, (ii) analiza izdelovalnosti obdelovanca glede na mesto vpetja, (iii) optimizacija simultanega obdelovalnega sistema z več robotskimi mehanizmi, (iv) tekmovanje robotskih mehanizmov za izvedbo tehnološkega procesa z oceno optimalne izdelovalnosti, (v) načrtovanje obdelovalnega sistema s hibridnim »Fuzzy-Swarm« optimizacijskim algoritmom, (vi) optimizacijski sistem za načrtovanje razmestitve robotskih obdelovalnih sistemov glede na minimalno pot obdelovanca in (vii) optimizacija regalnega skladiščnega sistema. Za namen validacije rezultatov rešitev, ki jih predlaga optimizacijski sistem, je bila razvita projekcija hitrostne anizotropije delovnih prostorov robotskih mehanizmov z barvno interpolacijo. Predstavljena rešitev ponuja ključno orodje pri načrtovanju razmestitve robotiziranega tehnološkega postopka v področje delovnega prostora z optimalno gibljivostjo robotskega mehanizma. Za učinkovito delovanje optimizacijskega sistema evalvacije je bil razvit postopek dinamičnih meritev položaja in zaznavanje dotika (kolizije) med gibajočimi se deli v trirazsežnem prostoru. Omenjeni pristop omogoča dinamične meritve položaja objektov v razvojnem okolju pri načrtovanju optimalne razmestitve tehnološkega procesa s postopkom optimizacije umetne skupinske inteligence.
Keywords:optimizacija, skupinska inteligenca, inteligenca roja, gibljivost robotskega mehanizma, hitrostna anizotropija, barvna interpolacija, tehnološki postopek, API vmesnik, kinematični model, računalniška simulacija, robotski mehanizem, proizvodni sistem, montažni sistem, obdelovalni sistem
Place of publishing:[Maribor
Publisher:S. Brezovnik]
Year of publishing:2011
PID:20.500.12556/DKUM-18494 New window
UDC:621.7-5:004.896(043.3)
COBISS.SI-ID:256277248 New window
NUK URN:URN:SI:UM:DK:OFILTINO
Publication date in DKUM:01.06.2011
Views:3955
Downloads:635
Metadata:XML DC-XML DC-RDF
Categories:KTFMB - FS
:
Copy citation
  
Average score:(0 votes)
Your score:Voting is allowed only for logged in users.
Share:Bookmark and Share


Hover the mouse pointer over a document title to show the abstract or click on the title to get all document metadata.

Secondary language

Language:English
Title:OPTIMIZATION OF OPERATION OF MANUFACTURING MACHINES AND SYSTEMS BY MEANS OF SWARM INTELLIGENCE
Abstract:Modernisation of actual production comprises permanent updating and integration of latest technologies into production systems. Inclusion of the latest technologies results in cutting-down of production times, an increase of capacities, and a reduction of production costs. A high level of automation of modern production systems makes it more and more suitable to individualize markets in terms of small-series production. Due to dynamic developments of modern technologies, efficient optimization of material, energy and information flows appears to be more difficult than it used to be. In a multitude of more and more complex production scenarios, an optimum production flow can no longer be accomplished with classical planning methods. Due to the above, an optimization system was developed in the present doctoral dissertation. It offers innovative solutions to optimization of machining, robotic, control, and assembly systems by means of algorithms of artificial collective intelligence. The approach proposed presents problem solving related to the production systems by taking examples from nature. Algorithms of the artificial collective intelligence permit optimization in a self-organizing way, which seems to be an important advantage over other optimization methods. To this purpose natural laws of colony-organized biological organisms were mapped into mathematical definitions and rules, which were then used in the optimization of planning of production machines and systems. An optimization system consists of a module of the prediction system and a module of the evaluation system. The optimization process is based on a feed back loop information exchange between the prediction and evaluation of planning a production system. The evaluation of the prediction of the planned production system is going on in a simulation environment of the computer-aided design, which increases applicability and adaptability of the optimization system developed to practice. The evaluation system is independent from the prediction system, which represents a universal and flexible approach to intelligent planning and modelling of production systems. Along with the developed universal optimization system we propose efficient solutions to intelligent planning and modelling of following technological issues: (i) optimization of blank positioning in the workspace of the production system with regard to robotic-mechanism flexibility, (ii) an analysis of manufacturing options for a workpiece with regard to its clamping point, (iii) optimization of a simultaneous machining system comprising several robotic mechanisms, (iv) competition of robotic mechanisms to be used in a technological process including the assessment of optimum manufacturing options, (v) planning of the production system by means of a hybrid »Fuzzy-Swarm« optimization algorithm, (vi) optimization system for planning positions for robotic production systems with regard to a minimum product path, and (vii) optimization of warehouse systems with stands. In order to validate solution results offered by the optimization system, a projection of speed anisotropy of robot workspaces was developed with colour interpolation. The solution proposed provides a key tool for planning positioning of a robotized technological process in a workspace taking into account the optimum robot mechanism flexibility. In order to accomplish efficient operation of the optimization system for evaluation, a procedure of dynamic measurements of positions and sensing of collision among the parts moving in a 3D space was developed. Such an approach permits dynamic measurements of object positions in a development environment when planning optimum positions of the technological process by means of the optimization of artificial collective intelligence.
Keywords:optimization, collective intelligence, swarm intelligence, manipulability of a robotic mechanism, velocity anisotropy, colour interpolation, technological procedure, API interface, kinematic model, computer simulation, robotic mechanism, production system, assembly system, machining system


Comments

Leave comment

You must log in to leave a comment.

Comments (0)
0 - 0 / 0
 
There are no comments!

Back
Logos of partners University of Maribor University of Ljubljana University of Primorska University of Nova Gorica