| | SLO | ENG | Cookies and privacy

Bigger font | Smaller font

Search the digital library catalog Help

Query: search in
search in
search in
search in
* old and bologna study programme

Options:
  Reset


1 - 10 / 61
First pagePrevious page1234567Next pageLast page
1.
2.
3.
4.
The complexity of porous structure of building materials
Marko Samec, 2011, dissertation

Abstract: This thesis seeks to establish the link between the structure (in a topological sense) of porous space and charged particle dynamics in porous matter, specifically in constituent elements of sustainable building materials such as clay, cement and soil. The work done is a combination of experimental research and modelling of analysed data using advanced and expanded network models to model pore structure and generalized conductivity model. The main outcome of this doctoral thesis is the demonstration that there is a correlation between the large scale structure of the pore space and the properties of the motion of charged particles through the pore space. This was achieved by conducting two experiments: the structure of pore space of selected porous materials (soil samples, clays, cements, clay-cement mixtures) was investigated using state-of-the-art X-ray computed microtomography, while the dynamics of charged particles in the samples was probed using low-frequency dielectric spectroscopy. The research done and described in the thesis is directed towards the advancement of understanding the transport phenomena and the structure of porous media which is of paramount importance for solving problems in building physics dealing with moist transport in building's envelope, the building-ground interaction, and in transport of contaminants in the vicinity of the repositories where the transfer of moist through soil can be the source of contamination.
Keywords: porous matter, clay-water system, hydrating cement, fractional dynamics, dielectric response, X-ray computed tomography, image analysis, complex network
Published: 11.05.2011; Views: 3645; Downloads: 158
.pdf Full text (34,69 MB)

5.
Particle formation using supercritical fluids
Željko Knez, 2006, review article

Abstract: Particle formation and the design of solid particles and powdery composites with unique properties is at the moment one of major the developments of supercritical fluid (synonyms: dense gases, dense fluids, high pressure) applications. Conventional well-known processes for the particle-size redistribution of solid materials are crushing and grinding (which for some compounds are carried out at cryogenic temperatures), air micronization, sublimation, and recrystallization from solution. There are several problems associated with the above-mentioned processes. Some substances are unstable under conventional milling conditions, in recrysfallization processes the product is contaminated with solvent and waste solvent streams are produced. The application of supercritical fluids may overcome the drawbacks of conventional processes, and powders and composites with special characteristics can be produced. Several processes for the formation and design of solid particles using dense gases have been studied intensively. The unique thermodynamic and fluid-dynamic properties of supercritical fluids can also be used for the impregnation of solid particles, for the formation of solid powderous emulsions, particle coatings, e.g. for the formation of solids with unique properties for use in different applications. This review will focus on the fundamentals and on recent advances of particle formation and design processes using supercritical fluids on their applications and the technological advantages and disadvantages of various processes.
Keywords: chemical processing, high pressure technology, supercritical CO2, proteinase, thermal stability, pressure stability, enzyme activity, water content, dense gases
Published: 31.05.2012; Views: 1515; Downloads: 44
.pdf Full text (514,21 KB)
This document has many files! More...

6.
Sustainable consumption at University of Maribor
Rebeka Kovačič Lukman, Peter Glavič, 2006, published scientific conference contribution

Keywords: sustainable development, sustainable consumption, water consumption, Agenda 21
Published: 31.05.2012; Views: 1180; Downloads: 30
URL Link to full text

7.
Influence of water scale on thermal flow losses of domestic appliances
Danijela Urbancl, Darko Goričanec, 2007, original scientific article

Abstract: Research results of how the precipitated water scale on heaters of small domestic appliances influences the consumption of electricity are presented. It shows that the majority of water scale samples are composed of aragonite, calcite and dolomite and that those components have an extraordinary low thermal conductivity. Also, the results show that at 2 mm thick deposit, depending on the chemical composition of water scale, the thermal flow is reduced for 10% to 40%; consequently, the consumption of electricity significantly increases.
Keywords: electricity, heat transfer, heat flow, heat exchanger, water scale
Published: 31.05.2012; Views: 1333; Downloads: 46
URL Link to full text

8.
Study of crosslinking efficiency of cotton cellulose by different physical-chemical methods and genetic programming
Olivera Šauperl, Miran Brezočnik, 2006, original scientific article

Abstract: We have investigated the crosslinking effect of unmercerized and mercerized cotton celluose crosslinked with different BTCA mass fractions in the impregnation bath. Crosslinking efficiency was analyzed using FT-IR spectroscopy, water retention capacity method, tensiometry and the methylene blue method. On the basis of the experimental data which was obtained with theseparate physical-chemical methods, different prediction models for crosslinking efficiency was developed. Modelling was taken out with the genetic programming method. Research shows good accordance of the experimentaldata with the genetic models.
Keywords: textile fibres, cotton, cellulose, crosslinking, FTIR spectroscopy, methylene blue method, water retention capacity, tensiometry, genetic programming
Published: 30.05.2012; Views: 1381; Downloads: 45
URL Link to full text

9.
Synthesis of non-isothermal heat integrated water networks in chemical processes
Miloš Bogataj, Miguel J. Bagajewicz, 2008, original scientific article

Abstract: This paper presents a new approach for the simultaneous synthesis and optimization of heat integrated water networks. A new superstructure for heat exchanger network (HEN) synthesis is proposed. The procedure is based on mixed integer non-linear mathematical programming (MINLP). Four relevant examples are presented to illustrate various aspects of the proposed approach.
Keywords: chemical processing, chemical process design, process water networks, water networks, wastewater minimization, heat integration, MINLP, HEN synthesis, superstructures, process synthesis
Published: 31.05.2012; Views: 1382; Downloads: 66
URL Link to full text

10.
FP7 EU project AquaFit4Use - synergy of 4 industrial sectors with the goal of waste water recycling
Alenka Majcen Le Marechal, Simona Vajnhandl, Darko Golob, 2009, professional article

Abstract: Sustainable water use in industry is the goal of AquaFit4Use, by a cross-sectorial, integrated approach. The overall objectives are: the development and implementation of new, reliable, cost-effective technologies, tools and methods for sustainable water supply, use and discharge in the main water consuming industries in order to significantly reduce water use, mitigate environmental impact and produce and apply water qualities in accordance with industrial own specifications (fit - for - use) from all possible sources, and contributing to a far-going closure of the water cycle in a economical, sustainable and safe way while improving their product quality and process stability.
Keywords: waste water recycling, reduce water use, water quality, sustainable water supply
Published: 31.05.2012; Views: 1816; Downloads: 18
URL Link to full text

Search done in 0.15 sec.
Back to top
Logos of partners University of Maribor University of Ljubljana University of Primorska University of Nova Gorica