| | SLO | ENG | Piškotki in zasebnost

Večja pisava | Manjša pisava

Iskanje po katalogu digitalne knjižnice Pomoč

Iskalni niz: išči po
išči po
išči po
išči po
* po starem in bolonjskem študiju

Opcije:
  Ponastavi


1 - 1 / 1
Na začetekNa prejšnjo stran1Na naslednjo stranNa konec
1.
Strojno učenje računalniškega igralca v igri Havannah
Nino Serec, 2020, diplomsko delo

Opis: V zadnjih letih je bil na področju umetne inteligence z uporabo okrepitvenega učenja nevronskih mrež dosežen preboj pri sposobnostih računalnika za igranje iger na deski, kot je Go, pri katerih je bil človek doslej močnejši nasprotnik. V diplomskem delu raziščemo algoritem igranja iger AlphaZero, ki kombinira tehnike preiskovanja dreves Monte Carlo in okrepitvenega učenja nevronskih mrež. Algoritem začne brez posebnega predznanja o dobrih strategijah, vendar se moč algoritma s postopkom učenja, ki se ponavlja iterativno, konstantno povečuje. V diplomskem delu opišemo in implementiramo osnovno obliko AlphaZero za igranje igre Havannah. Naučimo več različic modela nevronskih mrež, kjer vsak naslednik premaga svojega prednika in postane prvak. S tem pokažemo, da se lahko računalniški igralec uči igranja igre Havannah samo s podanimi pravili igre, tako da je sposoben premagati povprečnega človeškega igralca.
Ključne besede: igra Havannah, drevesno preiskovanje Monte Carlo, nevronske mreže, okrepitveno učenje, tabula rasa
Objavljeno: 11.11.2020; Ogledov: 369; Prenosov: 64
.pdf Celotno besedilo (1,29 MB)

Iskanje izvedeno v 0.01 sek.
Na vrh
Logotipi partnerjev Univerza v Mariboru Univerza v Ljubljani Univerza na Primorskem Univerza v Novi Gorici