| | SLO | ENG | Piškotki in zasebnost

Večja pisava | Manjša pisava

Iskanje po katalogu digitalne knjižnice Pomoč

Iskalni niz: išči po
išči po
išči po
išči po
* po starem in bolonjskem študiju

Opcije:
  Ponastavi


1 - 10 / 60
Na začetekNa prejšnjo stran123456Na naslednjo stranNa konec
1.
Modeling of tensile test results for low alloy steels by linear regression and genetic programming taking into account the non-metallic inclusions
Miha Kovačič, Uroš Župerl, 2022, izvirni znanstveni članek

Opis: Štore Steel Ltd. is one of the biggest flat spring steel producers in Europe. The main motive for this study was to study the influences of non-metallic inclusions on mechanical properties obtained by tensile testing. From January 2016 to December 2021, all available tensile strength data (472 cases–472 test pieces) of 17 low alloy steel grades, which were ordered and used by the final user in rolled condition, were gathered. Based on the geometry of rolled bars, selected chemical composition, and average size of worst fields non-metallic inclusions (sulfur, silicate, aluminium and globular oxides), determined based on ASTM E45, several models for tensile strength, yield strength, percentage elongation, and percentage reduction area were obtained using linear regression and genetic programming. Based on modeling results in the period from January 2022 to April 2022, five successively cast batches of 30MnVS6 were produced with a statistically significant reduction of content of silicon (t-test, p < 0.05). The content of silicate type of inclusions, yield, and tensile strength also changed statistically significantly (t-test, p < 0.05). The average yield and tensile strength increased from 458.5 MPa to 525.4 MPa and from 672.7 MPa to 754.0 MPa, respectively. It is necessary to emphasize that there were no statistically significant changes in other monitored parameters.
Ključne besede: mechanical properties, tensile test, tensile strength, yield strength, percentage elongation, percentage reduction area, low alloy steel, modeling, linear regression, genetic programming, industrial study, steel making, optimization
Objavljeno v DKUM: 24.03.2025; Ogledov: 0; Prenosov: 0
.pdf Celotno besedilo (3,72 MB)
Gradivo ima več datotek! Več...

2.
Strain rate-dependent compressive properties of bulk cylindrical 3D-printed samples from 316L stainless steel
Michaela Neuhauserova, Petr Koudelka, Tomáš Fíla, Jan Falta, Václav Rada, Jan Sleichrt, Petr Zlámal, Anja Mauko, Ondřej Jiroušek, 2022, izvirni znanstveni članek

Opis: The main aim of the study was to analyse the strain rate sensitivity of the compressive deformation response in bulk 3D-printed samples from 316L stainless steel according to the printing orientation. The laser powder bed fusion (LPBF) method of metal additive manufacturing was utilised for the production of the samples with three different printing orientations: 0◦ , 45◦ , and 90◦ . The specimens were experimentally investigated during uni-axial quasi-static and dynamic loading. A split Hopkinson pressure bar (SHPB) apparatus was used for the dynamic experiments. The experiments were observed using a high-resolution (quasi-static loading) or a high-speed visible-light camera and a high-speed thermographic camera (dynamic loading) to allow for the quantitative and qualitative analysis of the deformation processes. Digital image correlation (DIC) software was used for the evaluation of displacement fields. To assess the deformation behaviour of the 3D-printed bulk samples and strain rate related properties, an analysis of the true stress–true strain diagrams from quasi-static and dynamic experiments as well as the thermograms captured during the dynamic loading was performed. The results revealed a strong strain rate effect on the mechanical response of the investigated material. Furthermore, a dependency of the strain-rate sensitivity on the printing orientation was identified.
Ključne besede: 3D printing, laser powder bed fusion, 316L stainless steel, printing direction, split Hopkinson pressure bar
Objavljeno v DKUM: 20.03.2025; Ogledov: 0; Prenosov: 0
.pdf Celotno besedilo (10,71 MB)
Gradivo ima več datotek! Več...

3.
Combined effects of metakaolin and hybrid fibers on self-compacting concrete
Natalija Bede Odorčić, Gregor Kravanja, 2022, izvirni znanstveni članek

Opis: There is a need to develop new construction materials with improved mechanical performance and durability that are low-priced and have environmental benefits at the same time. This paper focuses on the rheological, mechanical, morphological, and durability properties of synthetic and steel fiber reinforced self-compacting concrete (SCC) containing 5–15% metakaolin (M) by mass as a green replacement for Portland cement. Testing of the fresh mixes included a slump-flow test, density, and porosity tests. Mechanical properties were determined through compression and flexural strength. A rapid chloride penetrability test (RCPT) and the chloride migration coefficient were used to assess the durability of the samples. A scanning electron microscope (SEM) with energy dispersion spectrometry (EDS) was used to study the concrete microstructure and the interfacial transition zone (ITZ). The results show that a combination of metakaolin and hybrid fibers has a negative effect on the flowability of SCC. In contrast, the inclusion of M and hybrid fibers has a positive effect on the compressive and flexural strength of SCC. The fracture of SCC samples without fibers was brittle and sudden, unlike the fiber-reinforced SCC samples, which could still transfer a considerable load with increasing crack mouth opening deflection. Overall, the chloride migration coefficients were reduced by up to 71% compared to the control mix. The chloride reduction is consistent with the resulting compact concrete microstructure, which exhibits a strong bond between fibers and the concrete matrix.
Ključne besede: self-compacting concrete, synthetic and steel fibers, metakaolin, rheology, mechanical properties, chloride penetration, SEM-EDS
Objavljeno v DKUM: 12.03.2025; Ogledov: 0; Prenosov: 0
.pdf Celotno besedilo (6,46 MB)
Gradivo ima več datotek! Več...

4.
The MINLP approach to topology, shape and discrete sizing optimization of trusses
Simon Šilih, Zdravko Kravanja, Stojan Kravanja, 2022, izvirni znanstveni članek

Opis: The paper presents the Mixed-Integer Non-linear Programming (MINLP) approach to the synthesis of trusses. The solution of continuous/discrete non-convex and non-linear optimization problems is discussed with respect to the simultaneous topology, shape and discrete sizing optimization of trusses. A truss MINLP superstructure of different topology and design alternatives has been generated, and a special MINLP model formulation for trusses has been developed. In the optimization model, a mass objective function of the structure has been defined and subjected to design, load and dimensioning constraints. The MINLP problems are solved using the Modified Outer-Approximation/Equality-Relaxation (OA/ER) algorithm. Multi-level MINLP strategies are introduced to accelerate the convergence of the algorithm. The Modified Two-Phase and the Sequential Two-Phase MINLP strategies are proposed in order to solve highly combinatorial topology, shape and discrete sizing optimization problems. The importance of local buckling constraints on topology optimization is also discussed. Some simple numerical examples are shown at the end of the paper to demonstrate the suitability and efficiency of the proposed method.
Ključne besede: structural synthesis, topology optimization, discrete sizing optimization, mixed-integer non-linear programming, MINLP, modified OA/ER algorithm, multi-level MINLP strategies, steel structures, trusses
Objavljeno v DKUM: 11.03.2025; Ogledov: 0; Prenosov: 2
.pdf Celotno besedilo (2,49 MB)
Gradivo ima več datotek! Več...

5.
Simulation and mechanical properties of fine-grained heat-affected zone microstructure in 18CrNiMo7-6 steel
Tomaž Vuherer, Fidan Smaili, Edvard Bjelajac, Mirza Manjgo, Gorazd Lojen, 2022, izvirni znanstveni članek

Opis: Heat-affected zones (HAZs) in real welds are usually quite narrow, and consequently most standard mechanical tests are difficult or even impossible. Therefore, simulated microstructures are often used for mechanical tests. However, the most often used weld thermal cycle simulator produces only a few millimeters wide area of simulated microstructure in the middle of specimens. Consequently, these kind of simulated specimen are not suitable for standard tensile tests, and even for Charpy impact tests, the simulated area can be too narrow. Therefore, to investigate the mechanical properties of a fine-grain heat-affected zone in 18CrNiMo7-6 steel, two methods were used for simulation of as-welded microstructures: (a) a weld thermal cycle simulator, and (b) as an alternative, though not yet verified option, austenitizing in a laboratory furnace + water quenching. The microstructures were compared and mechanical properties investigated. The grain sizes of the simulated specimens were 10.9 μm (water-quenched) and 12.6 μm (simulator), whereby the deviations from the real weld were less than 10%. Both types of simulated specimen were used for hardness measurement, Charpy impact tests, and fatigue tests. Water-quenched specimens were large enough to enable standard tensile testing. A hardness of 425 HV, yield strength Rp02 = 1121 MPa, tensile strength Rm = 1475 MPa, impact energy KV = 73.11 J, and crack propagation threshold ΔKthR = 4.33 MPa m0.5 were obtained with the water quenched specimens, and 419 HV, KV = 101.49 J, and ΔKthR = 3.4 MPa m0.5 with the specimens prepared with the simulator. Comparison of the results confirmed that the annealed and quenched specimens were suitable for mechanical tests of FG HAZs, even for standard tensile tests. Due to the use of simulated test specimens, the mechanical properties determined can be linked to the FG HAZ microstructure in 18CrNiMo7-6 steel.
Ključne besede: weld joint, fine-grained HAZ, simulation of microstructure, hardness, impact toughness, tensile properties, fatigue crack growth, 18CrNiMo7-6 steel
Objavljeno v DKUM: 05.12.2024; Ogledov: 0; Prenosov: 8
.pdf Celotno besedilo (5,22 MB)
Gradivo ima več datotek! Več...

6.
Flower-like superhydrophobic surfaces fabricated on stainless steel as a barrier against corrosion in simulated acid rain
Regina Fuchs-Godec, 2022, izvirni znanstveni članek

Opis: Functionalisation of the metal surface of low-carbon ferritic stainless steel (from hydrophilic to hydrophobic properties) was achieved by flower-like hierarchical structures on a steel substrate prepared by a low-cost immersion method. The flower-like structured hydrophobic layers on the steel substrate were obtained by immersing the samples in an ethanolic solution of stearic acid with the addition of various concentrations of expired vitamin E ((+)α-tocopherol). The stability and corrosion-inhibiting effect of the hierarchically structured (such as natural cornflower) hydrophobic layers were studied systematically during short and long immersion tests, 120 h (five days) in an acidic environment (pH = 3) using potentiodynamic measurements, electrochemical impedance spectroscopy and chronopotentiometry. The surfaces of the samples, their wettability, surface morphology and chemical composition were characterised by contact angle measurements, SEM, ATR-FTIR and EDAX. After 120 h of immersion, the inhibition efficiency of the flower-like structured hydrophobic layers on the steel substrate in the selected corrosion medium remained above 99%, and the hierarchical structure (flower-like structure) was also retained on the surface.
Ključne besede: acid rain, corrosion, flower-like structure, inhibition, stainless steel
Objavljeno v DKUM: 05.12.2024; Ogledov: 0; Prenosov: 4
.pdf Celotno besedilo (4,56 MB)
Gradivo ima več datotek! Več...

7.
Effect of residual stresses on the fatigue stress range of a pre-deformed stainless steel AISI 316L exposed to combined loading
Darko Jagarinec, Nenad Gubeljak, 2024, izvirni znanstveni članek

Opis: AISI 316L austenitic stainless steel is utilized in various processing industries, due to its abrasion resistance, corrosion resistance, and excellent properties over a wide temperature range. The physical and mechanical properties of a material change during the manufacturing process and plastic deformation, e.g., bending. During the combined tensile and bending loading of a structural component, the stress state changes due to the residual stresses and the loading range. To characterize the component’s stress state, the billet was bent to induce residual stress, but a phase transformation to martensite also occurred. The bent billet was subjected to combined tensile–bending and fatigue loading. The experimentally measured the load vs. displacement of the bent billet was compared with the numerical simulations. The results showed that during fatigue loading of the bent billet, both the initial stress state at the critical point and the stress state during the dynamic loading itself must be considered. Analysis was demonstrated only for one single critical point on the surface of the bent billet. The residual stresses due to the phase transformation of austenite to martensite affected the range and ratio of stress. The model for the stress–strain behaviour of the material was established by comparing the experimentally and numerically obtained load vs. displacement curves. Based on the description of the stress–strain behaviour of the pre-deformed material, guidelines have been provided for reducing residual tensile stresses in pre-deformed structural components.
Ključne besede: metastable austenitic stainless steel, fatigue, residual stress, phase transformation
Objavljeno v DKUM: 28.11.2024; Ogledov: 0; Prenosov: 6
.pdf Celotno besedilo (15,70 MB)
Gradivo ima več datotek! Več...

8.
Numerical simulation of fatigue crack growth and fracture in welded joints using XFEM—a review of case studies
Aleksandar Sedmak, Aleksandar Grbović, Nenad Gubeljak, Simon Sedmak, Nikola Budimir, 2024, pregledni znanstveni članek

Opis: Numerical simulation of fatigue crack growth in welded joints is not well represented in the literature, especially from the point of view of material heterogeneity in a welded joint. Thus, several case studies are presented here, including some focusing on fracture, presented by two case studies of mismatched high-strength low-alloyed (HSLA) steel welded joints, with cracks in the heat affected zone (HAZ) or in weld metal (WM). For fatigue crack growth, the extended finite element method FEM (XFEM) was used, built in ABAQUS and ANSYS R19.2, as presented by four case studies, two of them without modelling different properties of the welded joint (WJ). In the first one, fatigue crack growth (FCG) in integral (welded) wing spar was simulated by XFEM to show that its path is partly along welded joints and provides a significantly longer fatigue life than riveted spars of the same geometry. In the second one, an integral skin-stringer panel, produced by means of laser beam welding (LBW), was analysed by XFEM in its usual form with stringers and additional welded clips. It was shown that the effect of the welded joint is not significant. In the remaining two papers, different zones in welded joints (base metal—BM, WM, and HAZ) were represented by different coefficients of the Paris law to simulate different resistances to FCG in the two cases; one welded joint was made of high-strength low-alloyed steel (P460NL1) and the other one of armour steel (Protac 500). Since neither ABAQUS nor ANSYS provide an option for defining different fatigue properties in different zones of the WJ, an innovative procedure was introduced and applied to simulate fatigue crack growth through different zones of the WJ and evaluate fatigue life more precisely than if the WJ is treated as a homogeneous material.
Ključne besede: fatigue crack growth, extended finite element method, welded joints, fatigue life, highstrength low-alloyed steel
Objavljeno v DKUM: 25.11.2024; Ogledov: 0; Prenosov: 7
.pdf Celotno besedilo (13,42 MB)
Gradivo ima več datotek! Več...

9.
Optimization of billet cooling after continuous casting using genetic programming—industrial study
Miha Kovačič, Aljaž Zupanc, Robert Vertnik, Uroš Župerl, 2024, izvirni znanstveni članek

Opis: ŠTORE STEEL Ltd. is one of the three steel plants in Slovenia. Continuous cast 180 mm × 180 mm billets can undergo cooling to room temperature using a turnover cooling bed. They can also be cooled down under hoods or heat treated to reduce residual stresses. Additional operations of heat treatment from 36 h up to 72 h and cooling of the billets for 24 h, with limited capacities (with only two heat treatment furnaces and only six hoods), drastically influence productivity. Accordingly, the casting must be carefully planned (i.e., the main thing is casting in sequences), while the internal quality of the billets (i.e., the occurrence of inner defects) may be compromised. Also, the stock of billets can increase dramatically. As a result, it was necessary to consider the abandoning of cooling under hoods and heat treatment of billets. Based on the collected scrap data after ultrasonic examination of rolled bars, linear regression and genetic programming were used for prediction of the occurrence of inner defects. Based on modeling results, cooling under hoods and heat treatment of billets were abandoned at the casting of several steel grades. Accordingly, the casting sequences increased, and the stock of billets decreased drastically while the internal quality of the rolled bars remained the same.
Ključne besede: billet cooling, continuous casting, ultrasonic testing, logistic regression, genetic programming, industrial study, steel making, optimization
Objavljeno v DKUM: 25.11.2024; Ogledov: 0; Prenosov: 8
.pdf Celotno besedilo (1,68 MB)
Gradivo ima več datotek! Več...

10.
The influence of the ratio of circumference to cross-sectional area of tensile bars on the fatigue life of additive manufactured AISI 316L steel
Luka Ferlič, Filip Jerenec, Mario Šercer, Igor Drstvenšek, Nenad Gubeljak, 2024, izvirni znanstveni članek

Opis: The static and dynamic loading capacities of components depend on the stress level to which the material is exposed. The fatigue behavior of materials manufactured using additive technology is accompanied by a pronounced scatter between the number of cycles at the same stress level, which is significantly greater than the scatter from a material with the same chemical composition, e.g., AISI 316L, but produced by rolling or forging. An important reason lies in the fact that fatigue cracks are initiated almost always below the material surface of the loaded specimen. Thus, in the article, assuming that a crack will always initiate below the surface, we analyzed the fatigue behavior of specimens with the same bearing cross section but with a different number of bearing rods. With a larger number of rods, the circumference around the supporting part of the rods was 1.73 times larger. Thus, experimental fatigue of specimens with different sizes showed that the dynamic loading capacity of components with a smaller number of bars is significantly greater and can be monitored by individual stress levels. Although there are no significant differences in loading capacity under static and low-cycle loading of materials manufactured with additive technologies, in high-cycle fatigue it has been shown that the ratio between the circumference and the loading cross section of tensile-loaded rods plays an important role in the lifetime. This finding is important for setting a strategy for manufacturing components with additive technologies. It shows that a better dynamic loading capacity can be obtained with a larger loading cross section.
Ključne besede: AISI 316L stainless steel, additive manufacturing, FEM, high-cycle fatigue, fractography analysis
Objavljeno v DKUM: 25.11.2024; Ogledov: 0; Prenosov: 15
.pdf Celotno besedilo (33,45 MB)
Gradivo ima več datotek! Več...

Iskanje izvedeno v 0.19 sek.
Na vrh
Logotipi partnerjev Univerza v Mariboru Univerza v Ljubljani Univerza na Primorskem Univerza v Novi Gorici