| | SLO | ENG | Piškotki in zasebnost

Večja pisava | Manjša pisava

Iskanje po katalogu digitalne knjižnice Pomoč

Iskalni niz: išči po
išči po
išči po
išči po
* po starem in bolonjskem študiju

Opcije:
  Ponastavi


1 - 2 / 2
Na začetekNa prejšnjo stran1Na naslednjo stranNa konec
1.
Prepoznavanje aktivnosti osebe iz zaporedja slik z globokimi povratnimi nevronskimi mrežami
David Pintarič, 2019, diplomsko delo

Opis: V diplomskem delu se ukvarjamo s problemom prepoznavanja aktivnosti osebe iz zaporedja slik, pri čemer prepoznavo poskušamo izboljšati z upoštevanjem časovne komponente. To dosežemo z uporabo povratnih nevronskih mrež. Omejili smo se na naslednje aktivnosti: oseba ni v ravnovesju, se pripogiba, stoji, sedi, leži, hitro hodi, počasi hodi in pada. Pregledali smo obstoječe postopke prepoznavanja, preučili povratne nevronske mreže, pripravili množico podatkov, zasnovali algoritem, izvedli eksperimente in na koncu analizirali rezultate. Rezultati na 25 označenih videoposnetkih so pri uporabi povratne nevronske mreže pokazali 83,24 % povprečno natančnost pri uporabi tipa zaporedje v vektor in 75,53 % povprečno natančnost pri uporabi tipa zaporedje v zaporedje. Kljub temu da so dobljeni rezultati boljši od tistih, kjer ne upoštevamo časovne komponente, ugotavljamo, da povratne nevronske mreže zaradi računske zahtevnosti niso vedno najboljša izbira.
Ključne besede: računalniški vid, povratna nevronska mreža, pomnilna celica LSTM, pomnilna celica GRU, globoko učenje, detekcija oseb, prepoznavanje aktivnosti osebe
Objavljeno: 23.11.2019; Ogledov: 508; Prenosov: 151
.pdf Celotno besedilo (3,78 MB)

2.
Prepoznavanje aktivnosti osebe iz zaporedja slik s pomočjo konvolucijskih nevronskih mrež
Mihael Baketarić, 2018, diplomsko delo

Opis: V diplomskem delu smo se ukvarjali s prepoznavanjem aktivnosti osebe iz zaporedja slik. Omejili smo se na aktivnosti: stoji, sedi, leži, hitro hodi, počasi hodi in pada. Pregledali smo obstoječe postopke prepoznavanja, pripravili množico podatkov, preučili konvolucijske nevronske mreže in jih uporabili pri reševanju našega problema. Naš algoritem je sestavljen iz dveh korakov: iz izločevanja oseb iz slik in prepoznavanja aktivnosti. Oba koraka smo implementirali z uporabo konvolucijskih nevronskih mrež in analizirali rezultate. Za učenje in testiranje smo uporabili lastno podatkovno zbirko, ki je vsebovala video posnetke 6-ih različnih oseb, ki so izvajali vseh šest aktivnosti. Na veliko slikah oseba ni bila pravilno izločena oz. detektirana, zato se je naša množica podatkov občutno zmanjšala po odstranitvi takšnih slik. Naš postopek smo preverili s 6-kratno navzkrižno validacijo. Povprečna uspešnost prepoznavanja aktivnosti je bila 36 %, kar seveda ni dovolj visoko za realne aplikacije. Ugotavljamo, da se pri rezultatih prepoznavanja aktivnosti močno pozna dejstvo, da v našem postopku nismo upoštevali časovne komponente oz. rezultatov prepoznav na predhodnih slikah.
Ključne besede: računalniški vid, konvolucijska nevronska mreža, globoko učenje, detekcija oseb, prepoznavanje aktivnosti osebe
Objavljeno: 19.10.2018; Ogledov: 850; Prenosov: 205
.pdf Celotno besedilo (1,55 MB)

Iskanje izvedeno v 0.04 sek.
Na vrh
Logotipi partnerjev Univerza v Mariboru Univerza v Ljubljani Univerza na Primorskem Univerza v Novi Gorici