| | SLO | ENG | Cookies and privacy

Bigger font | Smaller font

Search the digital library catalog Help

Query: search in
search in
search in
search in
* old and bologna study programme

Options:
  Reset


1 - 4 / 4
First pagePrevious page1Next pageLast page
1.
Determination of neutron flux redistribution factors for a typical pressurized water reactor ex-core measurements using Monte Carlo technique
Tanja Goričanec, Bor Kos, Klemen Ambrožič, Andrej Trkov, Luka Snoj, Marjan Kromar, 2023, original scientific article

Abstract: In a typical pressurized water reactor, neutron detectors located outside the reactor core monitor reactor power. In addition, they are also used to measure the reactivity of the control rods. A novel approach to calculate the ex-core neutron detector response in a typical pressurized water reactor using the Monte Carlo technique is presented. A detailed ex-core model of the Krško nuclear power plant was developed using the Monte Carlo neutron transport code MCNP. Due to the location of the ex-core neutron detectors, the hybrid code ADVANTG is used to generate variance reduction parameters to accelerte the convergence of the results outside the reactor core. To use ADVANTG, the fixed neutron source had to be reconstructed from the criticality core calculation. This paper presents the sensitivity analysis of the response of the ex-core detectors to the neutron data libraries used, the description of the fixed neutron source and the ADVANTG parameters. It was found that a pin-wise description of the neutron source for at least two rows of fuel assemblies at the core periphery is necessary for accurate results. Our results show the importance of a correct description of the prompt neutron spectra in the high energy region and the impact this has on the response of the ex-core detectors. The method in which the prompt neutron fission spectra for important fission nuclides are weighted by the calculated reaction rates has been shown to be the best approximation, with deviations from the reference calculation within statistical uncertainty. The effect of nuclear data libraries on the response of the ex-core detector was investigated, and the difference between the ENDF/B-VII.0 and the ENDF/B-VIII.0 nuclear data libraries was ∼11%. When the deficient evaluation of the 56Fe isotope included in the ENDF/B-VIII.0 nuclear data library was replaced by the improved evaluation from the IAEA INDEN project, the differences decreased to ∼3.7%. In addition, neutron flux redistributions due to control rod movement were investigated and flux redistribution factors were updated using Monte Carlo particle transport methods. The reaction rate redistribution factors obtained with methods presented in this paper are within 1% agreement with the currently used factors.
Keywords: MCNP, ADVANTG, pressurized water reactor, Monte Carlo neutron transport, control rod, neutron flux redistribution factor, rod insertion, krško nuclear power plant
Published in DKUM: 29.11.2024; Views: 0; Downloads: 4
.pdf Full text (63,82 MB)
This document has many files! More...

2.
Comparison of different stator topologies for BLDC drives : master's thesis
Mitja Garmut, 2020, master's thesis

Abstract: The focus of this Master's thesis was to increase the output-power density of a fractional-horsepower BLDC drive. Different stator segmentation topologies were analyzed and evaluated for this purpose. The presented analysis was performed by using various models with different complexity levels, where a Magnetic Equivalent Circuit (MEC) model and a 2D transient Finite Element Method (FEM) model combined with a power-loss model, were applied systematically. Characteristic behavior of the BLDC drive was obtained in this way. The models were validated with measurement results obtained on an experimental test drive system. The influence of the weakening of the magnetic flux density and flux linkage, due to segmentation were analyzed based on the validated models. Furthermore, the increase of the thermal-stable output power and efficiency was rated, due to the consequently higher slot fill factor. Lastly, a detailed iron-loss analysis was performed for different stator topologies. The performed analysis showed that segmentation of the stator can enable a significant increase of the output power of the discussed BLDC drives, where the positive effects of segmentation outweigh the negative ones from the electromagnetic point of view. Segmentation, however, also impacts other domains, such as Mechanical and Thermal, which was out of the scope of this thesis, and will be performed in the future.
Keywords: fractional-horsepower BLDC drive, stator segmentation, fill factor increase, thermal-stable output power, Finite Element Method model
Published in DKUM: 17.11.2020; Views: 1373; Downloads: 40
.pdf Full text (1,69 MB)

3.
SOFT SWITCHING FOR IMPROVING THE EFFICIENCY AND POWER DENSITY OF A SINGLE-PHASE CONVERTER WITH POWER FACTOR CORRECTION
Tine Konjedic, 2015, doctoral dissertation

Abstract: This thesis investigates the possibilities for increasing the power conversion efficiency and power density of a single-phase single-stage AC-DC converter with power factor correction capability. Initially, the limitations are investigated for simultaneous increase of power density and efficiency in hard switched bidirectional converters. The switching frequency dependent turn-on losses of the transistors have been identified as the main limiting factor. In order to avoid the increase in total power losses with increasing the switching frequency, a control approach is proposed for achieving zero voltage switching transitions within the entire operating range of a bidirectional converter that utilizes power transistors in a bridge structure. This approach is based on operation in the discontinuous conduction mode with a variable switching frequency. Operation in the discontinuous conduction mode ensures the necessary reversed current that naturally discharges the parasitic output capacitance of the transistor and thus allows this transistor to be turned on at zero voltage. On the other hand, the varying switching frequency ensures that the converter operates close to the zero voltage switching boundary, which is defined as the minimum required current ripple at which zero voltage switching can be maintained. Operation with the minimum required current ripple is desirable as it generates the lowest magnetic core losses and conduction losses within the power circuit. The performance and effectiveness of the investigated approach were initially verified in a bidirectional DC-DC converter. A reliable zero voltage switching was confirmed over the entire operating range of a bidirectional DC-DC converter, as well as the absence of the reverse recovery effect and the unwanted turn-on of the synchronous transistor. In order to justify its usage and demonstrate its superior performance, the proposed zero voltage switching technique was compared with a conventional continuous conduction mode operation which is characterized by hard switching commutations. After successful verification and implementation in a bidirectional DC-DC converter, the investigated zero voltage switching approach was adapted for usage in an interleaved DC-AC converter with power factor correction capability. Comprehensive analysis of the converter's operation in discontinuous conduction mode with a variable switching frequency was performed in order to derive its power loss model. The latter facilitated the design process of the converter's power circuit. A systematic approach for selecting the converter's power components has been used while targeting for an extremely high power conversion efficiency over a wide operating range and a low volume design of the converter. The final result of the investigations performed within the scope of this thesis is the interleaved AC-DC converter with power factor correction capability. Utilization of interleaving allows for increasing the converter's power processing capability, reduces the conducted differential mode noise and shrinks the range within which the switching frequency has to vary. The proposed zero voltage switching control approach was entirely implemented within a digital signal controller and does not require any additional components within the converter's circuit. The experimental results have confirmed highly efficient operation over a wide range of operating powers. A peak efficiency of 98.4 % has been achieved at the output power of 1100 W, while the efficiency is maintained above 97 % over the entire range of output powers between 200 W and 3050 W.
Keywords: zero-voltage switching, power factor correction, variable switching frequency, discontinuous conduction mode, reverse recovery, unwanted turn-on, bidirectional DC-DC converter, bidirectional AC-DC converter, control of switching power converters
Published in DKUM: 13.10.2015; Views: 2269; Downloads: 242
.pdf Full text (23,37 MB)

4.
Improved frequency characteristics of the randomized PWM boost rectifier
Franc Mihalič, Miro Milanovič, Carlos Cuoto, 2003, original scientific article

Abstract: A randomized pulse width modulation (RPWM) algorithm is applied in the control unit of the boost rectifier to achieve improved frequency characteristics in the wide band. First, the introduction of the RPWM switching is reflected in a smaller increase of the total harmonic distortion (THD) factor in the input current. Nevertheless, decrease of the power factor is negligibly small. Second, the power spectrum density (PSD) of the input current is estimated and measured to evaluate the influence of randomization in the high-frequency range. This approach offers an effective and credible prediction method for reduction of conductive electromagnetic interference (EMI) by using the RPWM switching.
Keywords: rectifiers, boost rectifiers, randomized pulse width modulation, estimation methods, total harmonic distortion, power factor, conductive electromagnetic interference
Published in DKUM: 01.06.2012; Views: 2357; Downloads: 85
URL Link to full text

Search done in 0.09 sec.
Back to top
Logos of partners University of Maribor University of Ljubljana University of Primorska University of Nova Gorica