| | SLO | ENG | Cookies and privacy

Bigger font | Smaller font

Search the digital library catalog Help

Query: search in
search in
search in
search in
* old and bologna study programme

Options:
  Reset


1 - 10 / 17
First pagePrevious page12Next pageLast page
1.
Design, Characterisation and Applications of Cellulose-Based Thin Films, Nanofibers and 3D Printed Structures
Tanja Pivec, Tamilselvan Mohan, Rupert Kargl, Manja Kurečič, Karin Stana-Kleinschek, 2021, other educational material

Abstract: The introduction of the Laboratory Manual gives the theoretical bases on cellulose and its derivatives, which are used as starting polymers for the preparation of multifunctional polymers with three different advanced techniques - spin coating, electrospinning and 3D printing. In the following, each technique is presented in a separate Lab Exercise. Each exercise covers the theoretical basics on techniques for polymer processing and methods for their characterisation, with an emphasis on the application of prepared materials. The experimental sections contain all the necessary information needed to implement the exercises, while the added results provide students with the help to implement correct and successful exercises and interpret the results.
Keywords: multifunctional polymers, polysaccharides, cellulose, electrospun, spin coating, 3D printing, nanofibers, thin films, multifunctional materials, laboratory manuals
Published: 09.03.2021; Views: 70; Downloads: 7
URL Link to file

2.
High-Perssure process design for polymer treatment and heat transfer enhancement
Gregor Kravanja, 2018, doctoral dissertation

Abstract: The doctoral thesis presents the design of several high-pressure processes involving »green solvents« so-called supercritical fluids for the eco-friendly and sustainable production of new products with special characteristics, fewer toxic residues, and low energy consumption. The thesis is divided into three main parts: polymer processing and formulation of active drugs, measurements of transport properties form pendant drop geometry, and study of heat transfer under supercritical conditions. In the first part, special attention is given to using biodegradable polymers in particle size reduction processes that are related to pharmaceutical applications for controlled drug release. The PGSSTM micronization process was applied to the biodegradable carrier materials polyoxyethylene stearyl ether (Brij 100 and Brij 50) and polyethylene glycol (PEG 4000) for the incorporation of the insoluble drugs nimodipine, fenofibrate, o-vanillin, and esomeprazole with the purpose of improving their bioavailability and dissolution rate. In order to optimize and design micronization process, preliminary transfer and thermodynamic experiments of water-soluble carriers (Brij and PEG)/ SCFs system were carried out. It was observed that a combination of process parameters, including particle size reduction and interactions between drugs and hydrophilic carriers, contributed to enhancing the dissolution rates of precipitated solid particles. In the second part, a new optimized experimental setup based on pendant drop tensiometry was developed and a mathematical model designed to fit the experimental data was used to determine the diffusion coefficients of binary systems at elevated pressures and temperatures. Droplet geometry was examined by using a precise computer algorithm that fits the Young–Laplace equation to the axisymmetric shape of a drop. The experimental procedure was validated by a comparison of the experimental data for the water-CO2 mixture with data from the literature. For the first time, interfacial tension of CO2 saturated solution with propylene glycol and diffusion coefficients of propylene glycol in supercritical CO2 at temperatures of 120°C and 150°C in a pressure range from 5 MPa, up to 17.5 MPa were measured. Additionally, the drop tensiometry method was applied for measuring systems that are of great importance in carbon sequestration related applications. The effect of argon as a co-contaminant in a CO2 stream on the interfacial tension, diffusion coefficients, and storage capacity was studied. In the third part, comprehensive investigation into the heat transfer performance of CO2, ethane and their azeotropic mixture at high pressures and temperatures was studied. A double pipe heat exchanger was developed and set up to study the effects of different operating parameters on heat transfer performance over a wide range of temperatures (25 °C to 90 °C) and pressures (5 MPa to 30 MPa). Heat flux of supercritical fluids was measured in the inner pipe in the counter-current with water in the outer pipe. For the first time, the heat transfer coefficients (HTC) of supercritical CO2, ethane and their azeotropic mixture in water loop have been measured and compared. A brief evaluation is provided of the effect of mass flux, heat flux, pressure, temperature and buoyancy force on heat transfer coefficients. Additionally, to properly evaluate the potential and the performance of azeotropic mixture CO2-ethane, the coefficients of performance (COP) were calculated for the heat pump working cycle and compared to a system containing exclusively CO2.
Keywords: supercritical fluids, PGSSTM, formulation of active drugs, biodegradable polymers, transport and thermodynamic data, pendant drop method, carbon sequestration, heat transfer coefficients
Published: 28.05.2018; Views: 848; Downloads: 129
.pdf Full text (5,51 MB)

3.
Membranes from polysulfone/N,N-dimethylacetamide/water system
Vladimir Kaiser, Črtomir Stropnik, 2000, original scientific article

Abstract: Polymeric membranes were prepared by the wet-phase separation method from solutions of different contents of polysulfone in N,N-dimethylacetamide; solutions were cast in different thickness before immersion into the pure water coagulation bath. Two main processes take place during the formation of membranes: nucleation and growth of the polymer lean phase with subsequent solidification of the polymer rich phase, and the formation of channels, macrovoids and mega-macrovoids. By the first process a cellular structure is formed whilst the second process connects the cells by opening the space between them. The degree of interconnectedness is an additional factor that affects the pure water flux. By changing the cast solution compositions and/or their cast thickness the interconnectedness of the cells can be controlled.
Keywords: chemical technology, organic technology, polymer membranes, membrane preparation, wet phase inversion, polymers, polysulphon
Published: 18.08.2017; Views: 849; Downloads: 90
.pdf Full text (112,47 KB)
This document has many files! More...

4.
The study of release of chlorhexidine from preparations with modified thermosensitive poly-n-isopropylacrylamide microspheres
Witold Musiał, Bojana Vončina, Vanja Kokol, Janusz Pluta, 2012, original scientific article

Abstract: The aim of this study was to investigate and compare the release rates of chlorhexidine (CX) base entrapped in the polymeric beads of modified poly-N-isopropylacrylamides (pNIPAMs) at temperatures below and over the volume phase transition temperature (VPTT) of synthesized polymers: pNIPAM-A with terminal anionic groups resulting from potassium persulfate initiator, pNIPAM-B with cationic amidine terminal groups, and pNIPAM-C comprising anionic terminals, but with increased hydrophobicity maintained by the N-tert-butyl functional groups. The preparations, assessed in vitro below the VPTT, release an initial burst of CX at different time periods between 120 and 240 min, followed by a period of 24 h, when the rate of release remains approximately constant, approaching the zero-order kinetics; the release rates for the polymers beads are as follows: pNIPAM-C>pNIPAM-B>pNIPAM-A. The pattern of release rates at temperature over the VPTT is as follows: pNIPAM-C>pNIPAM-A>pNIPAM-B. In the presence of pNIPAM-C, the duration between the start of the release and the attained minimal inhibitory concentration (MIC) for most of the microbes, in conditions over the VPTT, increased from 60 to 90 min. The release prolongation could be ascribed to some interactions between the practically insoluble CX particle and the hydrophobic functional groups of the polymer.
Keywords: chlorhexidine, synthesized polymers, thermosensitivity
Published: 15.06.2017; Views: 479; Downloads: 286
.pdf Full text (2,68 MB)
This document has many files! More...

5.
Microcellular open-porous polystyrene-based composites from emulsions
Sebastjan Huš, Mitja Kolar, Peter Krajnc, 2014, original scientific article

Abstract: Series of cross-linked polystyrene samples were prepared using an emulsion templating approach, where monomers were contained in the continuous phase of the emulsion, while the droplet aqueous phase induced primary pores, connected with a number of secondary pores. Emulsions with a high fraction of the droplet phase (HIPEs) were used and stabilised with a combination of a surfactant (sorbitan monooleate) and various types of particles (charcoal powder, copper powder and carbon nanopowder). The morphology of the resulting porous polymer depends on the type and amount of the particles added to the emulsion; however, in all the cases open-cellular morphology was formed. The size of the primary pores (cavities) ranged from 5 µm to 25 µm, while the size of the secondary interconnecting pores was from 1 µm to 5 µm. The materials were investigated using scanning electron microscopy and nitrogen adsorption/desorption.
Keywords: polyHIPE, porous polymers, nanocomposites, porosity, polystyrene
Published: 16.03.2017; Views: 911; Downloads: 91
.pdf Full text (1,06 MB)
This document has many files! More...

6.
Mechanical properties of the materials for bruxoguards
Vojkan Lazić, Aleksandra Špadijer Gostović, Nebojša Romčević, Igor Đorđević, Ana Todorović, Rebeka Rudolf, 2014, original scientific article

Abstract: The aim of this study is to investigate the mechanical properties of polymethyl methacrylate (PMMA) and thermoplastic polycarbonate (TPC) materials in order to produce night bruxoguards. For this purpose we used a static tensile test. In the next step the microstructures of PMMA and TPC were observed. Within this framework special attention was paid to the examination of the tensile-test tube fracture surfaces for both materials. This approach revealed that PMMA is a brittle and TPC is a plastic material. Certain mechanical properties and a review of the crucial areas confirmed that the TPC material is extremely favourable for making occlusal splints.
Keywords: polymers, mechanical properties, characterization, bruxoguards, polymethyl methacrylate, thermoplastic polycarbonate
Published: 16.03.2017; Views: 802; Downloads: 79
.pdf Full text (348,98 KB)
This document has many files! More...

7.
The influence of thermoplastic elastomers on morphological and mechanical properties of PP/talc composites
Matjaž Denac, Vojko Musil, 1999, original scientific article

Abstract: Recent investigations have shown that modification of polymer matrix with filler and elastomers significantly affects composite's mechanical properties. Isotactic PP modified with either untreated or treated talc and either SEBS or SEBS-gMA were used in these investigations. Samples were prepared by melt-mixing in a Brabender kneading chamber and were compression molded into plates on a laboratory press. The composites were characterised by measuring mechanical properties (Young's modulus, yield stress, notched impact strength) and by defining morphology. Binary sistems PP/talc and PP/elastomer containing up to 16 vol.% of talc and up to 10 vol.% of elastomer, as well as ternary PP/talc/elastomer composites with 12 vol.% talc were investigated. Ternary composite's yield stress was also calculated by semiempirical equations. We have found out, that the use of treated modifiers (talc or elastomer) improves adhesion with matrix, which reflects on mechanical properties as better stress transfer.
Keywords: organic chemistry, polymers, thermoplastics, composites, characterization, chemistry, plastics, elastomers, morphology, mechanical properties
Published: 10.07.2015; Views: 1293; Downloads: 55
.pdf Full text (367,27 KB)
This document has many files! More...

8.
Poly(styrene-co-divinylbenzene-co-2-ethylhexyl)acrilate membranes with interconnected macroporous structure
Urška Sevšek, Silvo Seifried, Črtomir Stropnik, Irena Pulko, Peter Krajnc, 2011, original scientific article

Abstract: A combination of doctor blading and emulsion templating was used to prepare macroporous poly(styrene-co-divinylbenzene-co-2-ethylhexylacrylate) and poly(styrene-co-divinylbenzene) membranes with an interconnected porous structure. Water in oil high internal phase emulsions including monomers in the oil phase were cast onto a glass plate and polymerised at elevated temperature. After purification porous polyHIPE membranes were obtained. The volume ratio of aqueous phase (75 % or 85 %) and the molar ratio of divinylbenzene (2 % or 4 %) were varied, while the addition of chlorobenzene to the oil phase influenced the viscosity of the emulsions. A comonomer, 2-ethylhexylacrylate substantially improved the flexibility of the membranes. All yielding membranes were characterized by measuring their cast thicknesses and flow densities for deionised water. Scanning electron microscopy was used to study the morphological features of the membranes.
Keywords: membrane, porous polymers, polyHIPE, emulsions
Published: 10.07.2015; Views: 1328; Downloads: 121
.pdf Full text (668,83 KB)
This document has many files! More...

9.
Development of a 3D printer for thermoplastic modelling
Bogdan Valentan, Dušan Pogačar, Tomaž Brajlih, Tjaša Zupančič Hartner, Ana Pilipović, Igor Drstvenšek, 2012, original scientific article

Abstract: Additive technologies are entering the market in all price segments and the development of new machines and materials is rapidly growing. Machines under 2000 EUR are more and more interesting for home and educational use. This paper presents the development of a 3D printer that shapes the parts layer by layer by depositing the material on a predefined position. The development is presented from the engineering point of view. The construction steps, the control and the actuator solutions are presented. The ABS plastic was analysed for its material properties. The 3D printer evolved from a prototype to the pre-production phase.
Keywords: polymers, rapid prototyping, additive technologies, 3D print
Published: 10.07.2015; Views: 848; Downloads: 98
.pdf Full text (1,37 MB)
This document has many files! More...

10.
Search done in 0.29 sec.
Back to top
Logos of partners University of Maribor University of Ljubljana University of Primorska University of Nova Gorica