| | SLO | ENG | Cookies and privacy

Bigger font | Smaller font

Search the digital library catalog Help

Query: search in
search in
search in
search in
* old and bologna study programme

Options:
  Reset


1 - 2 / 2
First pagePrevious page1Next pageLast page
1.
Aquaporin-based biomimetic polymeric membranes
Joachim Habel, Michael R. Hansen, Søren Kynde, Nanna Larsen, Søren Roi Midtgaard, Grethe Vestergaard Jensen, Julie Bomholt, Anayo Ogbonna, Kristoffer Almdal, Alexander Schulz, Claus Hélix-Nielsen, 2015, review article

Abstract: In recent years, aquaporin biomimetic membranes (ABMs) for water separation have gained considerable interest. Although the first ABMs are commercially available, there are still many challenges associated with further ABM development. Here, we discuss the interplay of the main components of ABMs: aquaporin proteins (AQPs), block copolymers for AQP reconstitution, and polymer-based supporting structures. First, we briefly cover challenges and review recent developments in understanding the interplay between AQP and block copolymers. Second, we review some experimental characterization methods for investigating AQP incorporation including freeze-fracture transmission electron microscopy, fluorescence correlation spectroscopy, stopped-flow light scattering, and small-angle X-ray scattering. Third, we focus on recent efforts in embedding reconstituted AQPs in membrane designs that are based on conventional thin film interfacial polymerization techniques. Finally, we describe some new developments in interfacial polymerization using polyhedral oligomeric silsesquioxane cages for increasing the physical and chemical durability of thin film composite membranes.
Keywords: aquaporins, biomimetic membranes, block copolymers, proteopolymersomes, polyhedral oligomeric silsesquioxanes, polyamide layer, microfluidics, membrane proteins, protein-polymer-interactions
Published in DKUM: 21.06.2017; Views: 2409; Downloads: 170
.pdf Full text (10,59 MB)
This document has many files! More...

2.
Rheological study of interactions between non-ionic surfactants and polysaccharide thickeners used in textile printing
Rebeka Fijan, Sonja Šostar-Turk, Romano Lapasin, 2007, original scientific article

Abstract: The influence of four non-ionic surfactants (isododecyl and cetyl polyoxyethylene ethers) on aqueous polysaccharide solutions (sodium alginate, guar gum, and sodium carboxymethyl guar), applicable for textile printing pastes, were studied via rheological measurements. Rheology of polysaccharide-surfactant solutions in aqueous matrices is primarily governed by polymer content, which imparts marked shear-thinning and viscoelastic character to the system. Such properties are modulated in moderate but sensible way by changes in surfactant concentration or type. Above 3% surfactants addition to non-substituted guar gum solutions results in a significant impact leading to phase separation and a particular strongly associated phase is formed due to hydrogen bonds between ethylene oxy units from the surfactant and primary hydroxyl groups in guar. A satisfactory fitting of viscosity data is obtained with both the Cross equation and the Roberts-Barnes-Carew model. The experimental results of mechanical spectra can be described quite satisfactory with both the Friedrich-Braun and the generalized Maxwell models.
Keywords: textile printing, polysaccharide thickeners, rheology, non-ionic surfactant, polymer-surfactant interactions, viscoelasticity
Published in DKUM: 01.06.2012; Views: 2016; Downloads: 91
URL Link to full text

Search done in 0.06 sec.
Back to top
Logos of partners University of Maribor University of Ljubljana University of Primorska University of Nova Gorica