1. Finitesize effects on order reconstruction around nematic defectsSamo Kralj, Riccardo Rosso, Epifanio G. Virga, 2010, izvirni znanstveni članek Opis: By use of the Landaude Gennes phenomenological theory, we study the texture of a nematic liquid crystal confined within a hybrid cell. Precisely, we consider cylindrically symmetric solutions containing topological defects dictated by appropriate boundary conditions. We focus our attention on cells whose dimensions are comparable with the biaxial correlation length ▫$xi_b$▫. For such severe confinements the order reconstruction (OR) configuration could be stable. Its structural details reflect the balance among boundaryenforced frustration, elastic penalties, and finitesize effects. In particular, we analyze the interplay between finitesize effects and topological defects. We show that defects are always pinned to the negatively (planar) uniaxial sheet of the OR structure. The presence of a ring defect can dramatically increase the critical threshold below which the OR structure is stable. Ključne besede: physics, liquid crystals, nematic crystals, nematic defects, structural transitions Objavljeno: 07.06.2012; Ogledov: 1078; Prenosov: 61 Povezava na celotno besedilo 
2. Fingered core structure of nematic boojumsSamo Kralj, Riccardo Rosso, Epifanio G. Virga, 2008, izvirni znanstveni članek Opis: Using the Landaude Gennes phenomenological approach, we study the fine biaxial core structure of a boojum residing on the surface of a nematic liquid crystal phase. The core is formed by a negatively uniaxial finger, surrounded by a shell with maximal biaxiality. The characteristic finger's length and the shell's width are comparable to the biaxial correlation length. The finger tip is melted for topological reasons. Upon decreasing the surface anchoring strength below a critical value, the finger gradually leaves the bulk and it is expelled through the surface. Ključne besede: physics, liquid crystals, nematic crystals, line defects, surface phenomena Objavljeno: 07.06.2012; Ogledov: 902; Prenosov: 61 Povezava na celotno besedilo 
3. Numerical study of membrane configurationsLuka Mesarec, Miha Fošnarič, Samo Penič, Veronika KraljIglič, Samo Kralj, Wojciech Góźdź, Aleš Iglič, 2014, izvirni znanstveni članek Opis: We studied biological membranes of spherical topology within the framework of the spontaneous curvature model. Both Monte Carlo simulations and the numerical minimization of the curvature energy were used to obtain the shapes of the vesicles. The shapes of the vesicles and their energy were calculated for different values of the reduced volume. The vesicles which exhibit inplane ordering were also studied. Minimal models have been developed in order to study the orientational ordering in colloids coated with a thin sheet of nematic liquid crystal (nematic shells).The topological defects are always present on the surfaces with the topology of a sphere.The location of the topological defects depends strongly on the curvature of the surface. We studied the nematic ordering and the formation of topological defects on vesicles obtained by the minimization of the spontaneous curvature energy. Ključne besede: biological membranes, vesicles, spontaneous curvature model, Monte Carlo simulations, nematic shells, orientational ordering, topological defects Objavljeno: 14.06.2017; Ogledov: 282; Prenosov: 203 Celotno besedilo (4,38 MB) Gradivo ima več datotek! Več...

4. Effective topological charge cancelation mechanismLuka Mesarec, Wojciech Góźdź, Aleš Iglič, Samo Kralj, 2016, izvirni znanstveni članek Opis: Topological defects (TDs) appear almost unavoidably in continuous symmetry breaking phase transitions. The topological origin makes their key features independent of systems’ microscopic details; therefore TDs display many universalities. Because of their strong impact on numerous material properties and their significant role in several technological applications it is of strong interest to find simple and robust mechanisms controlling the positioning and local number of TDs. We present a numerical study of TDs within effectively two dimensional closed soft films exhibiting inplane orientational ordering. Popular examples of such class of systems are liquid crystalline shells and various biological membranes. We introduce the Effective Topological Charge Cancellation mechanism controlling localised positional assembling tendency of TDs and the formation of pairs {defect, antidefect} on curved surfaces and/or presence of relevant “impurities” (e.g. nanoparticles). For this purpose, we define an effective topological charge Δmeff consisting of real, virtual and smeared curvature topological charges within a surface patch Δς identified by the typical spatially averaged local Gaussian curvature K. We demonstrate a strong tendency enforcing Δmeff → 0 on surfaces composed of Δς exhibiting significantly different values of spatially averaged K. For Δmeff ≠ 0 we estimate a critical depinning threshold to form pairs {defect, antidefect} using the electrostatic analogy. Ključne besede: topological defects, topological charge, numerical studies, orientational ordering, nematic liquid crystals, liquid crystalline shells, biological membranes, nanoparticles, Gaussian curvature, electrostatic analogy, annihilation, topology Objavljeno: 23.06.2017; Ogledov: 310; Prenosov: 193 Celotno besedilo (2,15 MB) Gradivo ima več datotek! Več...

5. Impact of curvature on nematic topological defectsLuka Mesarec, 2018, doktorska disertacija Opis: Topological defects (TDs) appear almost unavoidably in continuous symmetry breaking phase transitions. The topological origin makes their key features independent of systems' microscopic details; therefore TDs display many universalities. Because of their strong impact on numerous material properties and their significant role in several technological applications it is of strong interest to find simple and robust mechanisms controlling the positioning and local number of TDs. There are strong evidences that in physics the fields are fundamental entities of nature and not particles. If this is the case then topological defects (TDs) might play the role of fundamental particles. An adequate testing ground to study and gain fundamental understanding of TDs are nematic liquid crystals. We present a numerical study of TDs within effectively two dimensional closed soft films exhibiting inplane orientational ordering. Popular examples of such class of systems are liquid crystalline shells and various biological membranes.
We analyze the impact of extrinsic and intrinsic curvature on positions of topological defects (TDs) in twodimensional (2D) nematic films. We demonstrate that both these curvature contributions are commonly present and are expected to be weighted by comparable elastic constants. A simple Landaude Gennes approach in terms of tensor nematic order parameter is used to numerically demonstrate impact of the curvatures on position of TDs on 2D ellipsoidal nematic shells. We introduce the Effective Topological Charge Cancellation mechanism controlling localised positional assembling tendency of TDs and the formation of pairs (defect,antidefect) on curved surfaces. Furthermore, we estimate a critical depinning threshold to form pairs (defect,antidefect) using the electrostatic analogy. Finally, we show how one could efficiently switch among qualitatively different structures by using a relative volume of ordered shells, which represents a relatively simple naturally accessible control parameter.
In doctoral thesis, we developed theoretical model of erythrocyte membrane by using a hybrid HelfrichLandau type mesoscopic approach, taking into account inplane membrane ordering. We demonstrate that the derived extrinsic membrane energy term, which strongly depends on the local orientations of the molecules, is essential for the predicted broadening of the range of the relative volumes corresponding to the stable discocyte shapes, which is otherwise very narrow if only intrinsic curvature energy term dominates. Ključne besede: Topological defects, Continuum fields, Nematic liquid crystals, Biological membranes, Nematic shells, Landaude Gennes formalism, Topological charge, Nanoparticles, Gaussian curvature, Electrostatic analogy, Intrinsic curvature, Extrinsic curvature, Crystal growth nucleation, Relative
volume Objavljeno: 09.03.2018; Ogledov: 787; Prenosov: 79 Celotno besedilo (23,66 MB) 