| | SLO | ENG | Cookies and privacy

Bigger font | Smaller font

Search the digital library catalog Help

Query: search in
search in
search in
search in
* old and bologna study programme

Options:
  Reset


1 - 3 / 3
First pagePrevious page1Next pageLast page
1.
Uporaba nevronskih mrež za napoved pretovora v Luki Koper, d.d.
Tom Žumer, 2017, master's thesis/paper

Abstract: Uspešne odločitve podjetij med drugim temeljijo tudi na napovedih. Le-te morajo biti dobre in natančne, da lahko podjetja ohranjajo svojo konkurenčno prednost. Napovedi se danes izvajajo z naprednejšimi metodami, med katere spadajo tudi nevronske mreže. V magistrskem delu smo želeli ugotoviti, ali so umetne nevronske mreže primerne za napovedovanje pretovora v Luki Koper, d. d. Podatki pretovora so bili sestavljeni iz generalnega in tekočega tovora, zaradi česar smo razvili dva modela umetne nevronske mreže, in sicer model mreže časovne vrste generalnega tovora in model mreže časovne vrste tekočega tovora. Modela vsebujeta t. i. NARX (ang. nonlinear autoregressive network with exogenous inputs) arhitekturo nevronske mreže. Izdelavo modela smo razdelili v dva koraka. V prvem koraku smo naredili redukcijo makroekonomskih kazalnikov, ki so nam predstavljali eksogene vhode modela. Izvedli smo jo z metodo analize glavnih komponent v kombinaciji z Monte Carlo simulacijo ter multiplo linearno regresijo. Modelu umetne nevronske mreže generalnega tovora smo namenili deset spremenljivk, modelu za tekoči tovor pa smo namenili štiri spremenljivke. V drugem koraku smo razvili umetno nevronsko mrežo generalnega in tekočega tovora. Rezultati obeh modelov so bili zadovoljivi. Poleg solidnega prileganja ocenjenih in dejanskih podatkov pretovora sta modela izpolnila tudi vse kriterije za kakovost modela. Glede na dobljene rezultate obeh modelov menimo, da so umetne nevronske mreže primerne za napovedovanje pretovora v Luki Koper, d. d.
Keywords: umetna nevronska mreža, analiza glavnih komponent, Monte Carlo simulacija, makroekonomski kazalniki, pretovor, napovedovanje, analiza časovnih vrst
Published: 05.06.2017; Views: 831; Downloads: 106
.pdf Full text (4,14 MB)

2.
Analiza trga kriptovalut s postopki slepega ločevanja izvorov
Jan Mikolič, 2020, master's thesis

Abstract: V magistrskem delu izvedemo analizo trga kriptovalut z metodami slepega ločevanja izvorov. Osredotočimo se na algoritma FastICA in SOBI. Preizkusimo različne vrednosti vhodnih parametrov in stroškovnih funkcij. Ugotovimo, da je algoritem SOBI s številom zakasnitev 400 primernejši, saj izkorišča časovno strukturo zgodovinskih cen kriptovalut. Na podlagi mešalnega modela kriptovalute gručimo v skupine, na katere vplivajo podobni dejavniki. Predstavimo model za napovedovanje cen kriptovalut na podlagi izračunanih neodvisnih komponent. Zaključimo z ugotovitvijo, da napovedovanje cen kriptovalut zgolj na podlagi zgodovinskih podatkov o cenah najverjetneje ni možno ne glede na napovedovalni model in predhodne transformacije.
Keywords: kriptovalute, analiza neodvisnih komponent, slepo ločevanje izvorov, napovedovanje časovnih vrst, FastICA, SOBI
Published: 12.02.2020; Views: 490; Downloads: 95
.pdf Full text (1,78 MB)

3.
Napovedovanje časovnih vrst z uporabo povratnih nevronskih mrež
Niko Uremovič, 2020, undergraduate thesis

Abstract: V diplomskem delu predstavimo napovedovanje multivariatnih časovnih vrst z uporabo povratnih nevronskih mrež, ter primernost pristopa k napovedovanju preizkusimo na področju energetike. Za pametno krmiljenje električnih naprav je namreč nujno potrebno poznavanje posledic, ki jih imajo naše akcije na stanje naprav in njihove okolice. Stanje naprav definira več spremenljivk, zato spreminjanje stanja skozi čas opisuje multivariatna časovna vrsta. Za električno napravo grelnik vode pripravimo napovedni model, ki temelji na povratni nevronski mreži arhitekture LSTM. Ker pa se lastnosti naprave in s tem opisujoče časovne vrste lahko s časom spreminjajo, moramo za ohranjanje natančnostosti napovednega modela le-tega sproti prilagajati. V diplomskem delu predstavimo različne strategije sprotnega učenja modela in primerjamo njihovo učinkovitost na napovednem modelu za grelnik vode.
Keywords: Multivariatne časovne vrste, napovedovanje časovnih vrst, povratne nevronske mreže, katastrofalno pozabljanje
Published: 03.11.2020; Views: 52; Downloads: 13
.pdf Full text (1,50 MB)

Search done in 0.07 sec.
Back to top
Logos of partners University of Maribor University of Ljubljana University of Primorska University of Nova Gorica