| | SLO | ENG | Piškotki in zasebnost

Večja pisava | Manjša pisava

Iskanje po katalogu digitalne knjižnice Pomoč

Iskalni niz: išči po
išči po
išči po
išči po
* po starem in bolonjskem študiju

Opcije:
  Ponastavi


1 - 3 / 3
Na začetekNa prejšnjo stran1Na naslednjo stranNa konec
1.
Tyrosinase catalysed coupling of functional molecules onto protein fibres
Suzana Jus, Vanja Kokol, Georg M. Gübitz, 2008, izvirni znanstveni članek

Opis: Grafting, using oxidative enzymes shows a high potential for wool fibres funktionalisation. In this work we attempt to graft on wool fibres with phenolic antioxidants order to introduce and improve the properties of the fibre. The approach of tyrosinase to oxidize tyrosine residues in wool proteins to quinones, which can further react with free sulfhydryl (thiol), amino or phenolic groups of different substrates was exploited to couple different phenolic antioxidants (caffeic acid and chlorogenic acid) onto the wool fibre proteins. Tyrosinase catalysed reactions were followed by different analytical methods like oxygen consumption, FT-NIR Raman and UV/VIS spectroscopy. It was proved that phenolic compounds used are strongly cross-linked on the wool fibre resulting to an improved antioxidant activity.
Ključne besede: textile fibres, wool fibers, tyrosinase, caffeic acid, chlorogenic acid, grafting, chemical modification of fibres
Objavljeno: 31.05.2012; Ogledov: 991; Prenosov: 64
URL Povezava na celotno besedilo

2.
Grafting of cotton with [beta]-cyclodextrin via poly(carboxylic acid)
Bojana Vončina, Alenka Majcen Le Marechal, 2005, izvirni znanstveni članek

Opis: Cyclodextrins are cyclic oligosaccharides. Cyclodextrin molecules can form inclusion complexes with a large number of organic molecules. The properties of cyclodextrins enable them to be used in a variety of different textile applications. Cyclodextrins can act as auxiliaries in washing and dyeing processes, and they can also be fixed onto different fiber surfaces. Because of the complexing abilities of cyclodextrins, textiles with new functional properties can be prepared. Poly(carboxylic acid)s such as 1,2,3,4-butane tetracarboxylic acid (BTCA) are well-known non-formaldehyde crosslinking reagents. BTCA has four carboxylic acid groups, which can react with hydroxyl groups of cellulose and form stable ester bonds. We crosslinked -cyclodextrin molecules on hydroxyl groups of cellulose via BTCA.
Ključne besede: textile fibres, chemical modification, beta cyclodextrines, butane tetracarboxylic acid, BTCA, FTIR, host-guest systems, formaldehyde-free crosslinking reagents
Objavljeno: 01.06.2012; Ogledov: 1298; Prenosov: 35
URL Povezava na celotno besedilo

3.
Topochemical modification of cotton fibres with carboxymethyl cellulose
Lidija Fras Zemljič, Peer Stenius, Janne Laine, Karin Stana-Kleinschek, 2008, izvirni znanstveni članek

Opis: The research reported in this paper demonstrates that the capacity of cotton fibres to adsorb cationic surfactants as well as the rate of the adsorption process can be increased by adsorbing carboxymethyl cellulose (CMC) onto the fibre surfaces; in addition, the adsorption can be restricted to the fibre surface. CMC was deposited by means of adsorption from an aqueous solution. The adsorption of N-cetylpyridinium chloride (CPC) from an aqueous solution onto the CMC-modified fibres was measured using UVspectrometric determination of the surfactant concentration in the solution. Adsorption onto the cotton fibres was studied in a weakly basic environment (pH 8.5) where cotton fibres are negatively charged and the CPC ion is positively charged. Modification of the fibres by adsorption of CMC introduces new carboxyl groups onto the fibre surfaces, thereby increasing the adsorption capacity of the fibres for CPC. The initial rate of adsorption of CPC increased proportionally with the amountof charge; however, this rate slowed down at high degrees of coverage onfibres with a high charge. The adsorption of cationic surfactant to the anionic surface groups was stoichiometric, with no indication of multilayer oradmicelle formation. It was evident that the acidic group content of the fibres was the primary factor determining cationic surfactant adsorption to these fibres.
Ključne besede: textile fibres, cotton fibres, modification, carboxymethyl cellulose, acid groups, charge increase, conductiometric titration, phenol-sulphuric acid test, practical applications
Objavljeno: 01.06.2012; Ogledov: 1092; Prenosov: 71
URL Povezava na celotno besedilo

Iskanje izvedeno v 0.06 sek.
Na vrh
Logotipi partnerjev Univerza v Mariboru Univerza v Ljubljani Univerza na Primorskem Univerza v Novi Gorici