| | SLO | ENG | Piškotki in zasebnost

Večja pisava | Manjša pisava

Iskanje po katalogu digitalne knjižnice Pomoč

Iskalni niz: išči po
išči po
išči po
išči po
* po starem in bolonjskem študiju


1 - 10 / 67
Na začetekNa prejšnjo stran1234567Na naslednjo stranNa konec
Reduction of surface defects by optimization of casting speed using genetic programming : an industrial case study
Miha Kovačič, Uroš Župerl, Leo Gusel, Miran Brezočnik, 2023, izvirni znanstveni članek

Opis: Štore Steel Ltd. produces more than 200 different types of steel with a continuous caster installed in 2016. Several defects, mostly related to thermomechanical behaviour in the mould, originate from the continuous casting process. The same casting speed of 1.6 m/min was used for all steel grades. In May 2023, a project was launched to adjust the casting speed according to the casting temperature. This adjustment included the steel grades with the highest number of surface defects and different carbon content: 16MnCrS5, C22, 30MnVS5, and 46MnVS5. For every 10 °C deviation from the prescribed casting temperature, the speed was changed by 0.02 m/min. During the 2-month period, the ratio of rolled bars with detected surface defects (inspected by an automatic control line) decreased for the mentioned steel grades. The decreases were from 11.27 % to 7.93 %, from 12.73 % to 4.11 %, from 16.28 % to 13.40 %, and from 25.52 % to 16.99 % for 16MnCrS5, C22, 30MnVS5, and 46MnVS5, respectively. Based on the collected chemical composition and casting parameters from these two months, models were obtained using linear regression and genetic programming. These models predict the ratio of rolled bars with detected surface defects and the length of detected surface defects. According to the modelling results, the ratio of rolled bars with detected surface defects and the length of detected surface defects could be minimally reduced by 14 % and 189 %, respectively, using casting speed adjustments. A similar result was achieved from July to November 2023 by adjusting the casting speed for the other 27 types of steel. The same was predicted with the already obtained models. Genetic programming outperformed linear regression.
Ključne besede: continuous casting of steel, surface defects, automatic control, machine learning, modelling, optimisation, prediction, linear regression, genetic programming
Objavljeno v DKUM: 25.03.2024; Ogledov: 100; Prenosov: 5
.pdf Celotno besedilo (1,19 MB)
Gradivo ima več datotek! Več...

Agile Machine Learning Model Development Using Data Canyons in Medicine : A Step towards Explainable Artificial Intelligence and Flexible Expert-Based Model Improvement
Bojan Žlahtič, Jernej Završnik, Helena Blažun Vošner, Peter Kokol, David Šuran, Tadej Završnik, 2023, izvirni znanstveni članek

Opis: Over the past few decades, machine learning has emerged as a valuable tool in the field of medicine, driven by the accumulation of vast amounts of medical data and the imperative to harness this data for the betterment of humanity. However, many of the prevailing machine learning algorithms in use today are characterized as black-box models, lacking transparency in their decision-making processes and are often devoid of clear visualization capabilities. The transparency of these machine learning models impedes medical experts from effectively leveraging them due to the high-stakes nature of their decisions. Consequently, the need for explainable artificial intelligence (XAI) that aims to address the demand for transparency in the decision-making mechanisms of black-box algorithms has arisen. Alternatively, employing white-box algorithms can empower medical experts by allowing them to contribute their knowledge to the decision-making process and obtain a clear and transparent output. This approach offers an opportunity to personalize machine learning models through an agile process. A novel white-box machine learning algorithm known as Data canyons was employed as a transparent and robust foundation for the proposed solution. By providing medical experts with a web framework where their expertise is transferred to a machine learning model and enabling the utilization of this process in an agile manner, a symbiotic relationship is fostered between the domains of medical expertise and machine learning. The flexibility to manipulate the output machine learning model and visually validate it, even without expertise in machine learning, establishes a crucial link between these two expert domains.
Ključne besede: XAI, explainable artificial intelligence, data canyons, machine learning, transparency, agile development, white-box model
Objavljeno v DKUM: 14.03.2024; Ogledov: 110; Prenosov: 5
.pdf Celotno besedilo (5,28 MB)
Gradivo ima več datotek! Več...

Reduction of Neural Machine Translation Failures by Incorporating Statistical Machine Translation
Jani Dugonik, Mirjam Sepesy Maučec, Domen Verber, Janez Brest, 2023, izvirni znanstveni članek

Opis: This paper proposes a hybrid machine translation (HMT) system that improves the quality of neural machine translation (NMT) by incorporating statistical machine translation (SMT). Therefore, two NMT systems and two SMT systems were built for the Slovenian-English language pair, each for translation in one direction. We used a multilingual language model to embed the source sentence and translations into the same vector space. From each vector, we extracted features based on the distances and similarities calculated between the source sentence and the NMT translation, and between the source sentence and the SMT translation. To select the best possible translation, we used several well-known classifiers to predict which translation system generated a better translation of the source sentence. The proposed method of combining SMT and NMT in the hybrid system is novel. Our framework is language-independent and can be applied to other languages supported by the multilingual language model. Our experiment involved empirical applications. We compared the performance of the classifiers, and the results demonstrate that our proposed HMT system achieved notable improvements in the BLEU score, with an increase of 1.5 points and 10.9 points for both translation directions, respectively.
Ključne besede: neural machine translation, statistical machine translation, sentence embedding, similarity, classification, hybrid machine translation
Objavljeno v DKUM: 20.02.2024; Ogledov: 163; Prenosov: 11
.pdf Celotno besedilo (400,40 KB)
Gradivo ima več datotek! Več...

Artificial intelligence based prediction of diabetic foot risk in patients with diabetes : a literature review
Lucija Gosak, Adrijana Svenšek, Mateja Lorber, Gregor Štiglic, 2023, pregledni znanstveni članek

Opis: Diabetic foot is a prevalent chronic complication of diabetes and increases the risk of lower limb amputation, leading to both an economic and a major societal problem. By detecting the risk of developing diabetic foot sufficiently early, it can be prevented or at least postponed. Using artificial intelligence, delayed diagnosis can be prevented, leading to more intensive preventive treatment of patients. Based on a systematic literature review, we analyzed 14 articles that included the use of artificial intelligence to predict the risk of developing diabetic foot. The articles were highly heterogeneous in terms of data use and showed varying degrees of sensitivity, specificity, and accuracy. The most used machine learning techniques were support vector machine (SVM) (n = 6) and K-Nearest Neighbor (KNN) (n = 5). Future research is recommended on larger samples of participants using different techniques to determine the most effective one.
Ključne besede: artificial intelligence, machine learning, thermography, diabetic foot prediction, diabetes, diabetes care, diabetic foot, literature review
Objavljeno v DKUM: 27.11.2023; Ogledov: 278; Prenosov: 11
.pdf Celotno besedilo (654,91 KB)
Gradivo ima več datotek! Več...

IoT and satellite sensor data integration for assessment of environmental variables: a case study on NO2
Jernej Cukjati, Domen Mongus, Krista Rizman Žalik, Borut Žalik, 2022, izvirni znanstveni članek

Opis: This paper introduces a novel approach to increase the spatiotemporal resolution of an arbitrary environmental variable. This is achieved by utilizing machine learning algorithms to construct a satellite-like image at any given time moment, based on the measurements from IoT sensors. The target variables are calculated by an ensemble of regression models. The observed area is gridded, and partitioned into Voronoi cells based on the IoT sensors, whose measurements are available at the considered time. The pixels in each cell have a separate regression model, and take into account the measurements of the central and neighboring IoT sensors. The proposed approach was used to assess NO2 data, which were obtained from the Sentinel-5 Precursor satellite and IoT ground sensors. The approach was tested with three different machine learning algorithms: 1-nearest neighbor, linear regression and a feed-forward neural network. The highest accuracy yield was from the prediction models built with the feed-forward neural network, with an RMSE of 15.49 ×10−6 mol/m2.
Ključne besede: Internet of Things, IoT, remote sensing, sensor integration, machine learning, ensemble method
Objavljeno v DKUM: 22.09.2023; Ogledov: 324; Prenosov: 16
.pdf Celotno besedilo (3,72 MB)
Gradivo ima več datotek! Več...

Development of the web service for grocery store receipt recognition and subsequent analysis of the nutritional value of the products purchased
Pavel Nesterov, 2023, magistrsko delo

Opis: The objective of this study is to tackle the worldwide problem of cardiovascular diseases (CVDs). These diseases represent the foremost reason for mortality on a global scale, accounting for approximately 17.9 million deaths annually. Unhealthy eating habits are one of the most frequent causes for CVD in the world and are addressed in various ways, including digital technologies. The goal of this project i`s to develop a web service that enables a non-intrusive way of tracking food consumption and monitoring the dynamics of nutrient intake compared to the traditional "record-every-meal" type of tracking. We followed a design science research approach to develop the web service. The web service employs semantic similarity algorithms and enables human feedback to improve its performance. It will be developed using the Serverless framework and deployed on the AWS platform. Receipt recognition will be performed using AWS Textract, and the nutritional value of the products will be obtained from publicly available databases. This approach aims to create an innovative and user-friendly method for tracking food consumption and nutrient dynamics.
Ključne besede: Healthy eating, Grocery store receipt, Nutritional analysis, Daily intake monitoring, machine learning, chatbot
Objavljeno v DKUM: 14.09.2023; Ogledov: 344; Prenosov: 16
.pdf Celotno besedilo (1,28 MB)

Analyzing EEG signal with Machine Learning in Python : graduation thesis
Evgenija Siljanovska, 2023, diplomsko delo

Opis: This thesis presents a comprehensive analysis of EEG data using Python libraries, MNE and machine learning techniques. The thesis focuses on utilizing these tools to extract valuable insights from EEG recordings. Our dataset consists of EEG data in the BrainVision format, acquired during a psychology experiment. The analysis involves preprocessing, filtering, segmentation, and visualization of the EEG data. Additionally, machine learning algorithms are employed to classify and predict patterns within the EEG signals. The findings showcase the effectiveness of Python, MNE, and machine learning in EEG analysis.
Ključne besede: EEG data, MNE, Machine learning, Analyzing
Objavljeno v DKUM: 17.08.2023; Ogledov: 444; Prenosov: 44
.pdf Celotno besedilo (2,66 MB)

Iskanje izvedeno v 0.2 sek.
Na vrh
Logotipi partnerjev Univerza v Mariboru Univerza v Ljubljani Univerza na Primorskem Univerza v Novi Gorici