| | SLO | ENG | Cookies and privacy

Bigger font | Smaller font

Search the digital library catalog Help

Query: search in
search in
search in
search in
* old and bologna study programme

Options:
  Reset


1 - 10 / 17
First pagePrevious page12Next pageLast page
1.
Thermal post-impact behaviour of closed-cell cellular structures with fillers
Matej Vesenjak, Andreas Öchsner, Zoran Ren, 2007, original scientific article

Abstract: The study describes the behavior of regular closed-cell cellular structure with gaseous fillers under impact conditions and consequent post-impact thermal conduction due to the compression of filler gas. Two dependent but different analyses types have been carried out for this purpose: (i) a strongly coupled fluid-structure interaction and (ii) a weakly coupled thermal- structural analysis. This paper describes the structural analyses of the closed-cell cellular structure under impact loading. The explicit code LS-DYNA was used to computationally determine the behavior of cellular structure under compressive dynamic loading, where one unit volume element of the cellular structure has been discretised with finite elements considering a simultaneous strongly coupled interaction with the gaseous pore filler. Closed-cell cellular structures with different relative densities and initial pore pressures have been considered. Computational simulations have shown that the gaseous filler influences the mechanical behavior of cellular structure regarding the loading type, relative density and type of the base material. It was determined that the filler's temperature significantly increases due to the compressive impact loading, which might influence the macroscopic behavior of the cellular structure.
Keywords: mechanics, cellular structures, closed cells, gas fillers, impact loading, fluid-structure interaction, dynamic loads, LS-DYNA, ANSYS CFX 10.0, computational simulations
Published: 31.05.2012; Views: 940; Downloads: 18
URL Link to full text

2.
Evaluation of thermal and mechanical filler gas influence on honeycomb structures behaviour
Matej Vesenjak, Andreas Öchsner, Zoran Ren, 2007, original scientific article

Abstract: In this paper the behavior of hexagonal honeycombs under dynamic in-plane loading is described. Additionally, the presence and influence of the filler gas inside the honeycomb cells is considered. Such structures are subjected to very large deformation during an impact, where the filler gas might strongly affect their behavior and the capability of deformational energy absorption, especially at very low relative densities. The purpose of this research was therefore to evaluate the influence of filler gas on the macroscopic cellular structure behavior under dynamic uniaxial loading conditions by means of computational simulations. The LS-DYNA code has been used for this purpose, where a fully coupled interaction between the honeycomb structure and the filler gas was simulated. Different relative densities, initial pore pressures and strain rates have been considered. The computational results clearly show the influence of the filler gas on the macroscopic behavior of analyzed honeycomb structures. Because of very large deformation of the cellular structure, the gas inside the cells is also enormously compressed which results in very high gas temperatures and contributes to increased crash energy absorption capability. The evaluated results are valuable for further research considering also the heat transfer in honeycomb structures and for investigations of variation of the base material mechanical properties due to increased gas temperatures under impact loading conditions.
Keywords: mechanics, cellular materials, honeycomb structure, gas filler, thermal properties, mechanical properties, dynamic loading, LS-DYNA, computational simulations
Published: 31.05.2012; Views: 1095; Downloads: 22
URL Link to full text

3.
Numerical analysis of the crack growth in a high loaded bolt connection
Marko Knez, Srečko Glodež, Janez Kramberger, 2007, original scientific article

Abstract: The paper deals with the research on the crack growth in a bolt connection of a lug for crane counter weight bars. Counter weight bars are structural elements subjected to very heavy loads and therefore need special attention. The main purpose of this research is to determine the number of load cycles required for a crack to propagate from initial to criticakl crack length, whenthe final failure can be expected to occur. All required material parameters and experimental results were determined in our previous research. The influence of the initial crack siye upon the remaining life of the lug is reserched numericallu by means of FE analysis and analytically by use of the corrected analystical model.
Keywords: fracture mechanics, cyclic loading, fatigue crack growth, service life prediction, numerical analysis, bolt connection
Published: 31.05.2012; Views: 1542; Downloads: 66
URL Link to full text

4.
Behaviour of cellular materials under impact loading
Matej Vesenjak, Zoran Ren, Andreas Öchsner, 2008, original scientific article

Abstract: The paper describes experimental and computational testing of regular open-cell cellular structures behaviour under impact loading. Open-cell cellular specimens made of aluminium alloy and polymer were experimentally tested under quasi-static and dynamic compressive loading in order to evaluate the failure conditions and the strain rate sensitivity. Additionally, specimens with viscous fillers have been tested to determine the increase of the energy absorption due to filler effects. The tests have shown that brittle behaviour of the cellular structure due to sudden rupture of intercellular walls observed in quasi-static and dynamic tests is reduced by introduction of viscous filler, while at the same time the energy absorption is increased. The influence of fluid filler on open-cell cellular material behaviour under impact loading was further investigated with parametric computational simulations, where fully coupled interaction between the base material and the pore filler was considered. The explicit nonlinear finite element code LS-DYNA was used for this purpose. Different failure criteria were evaluated to simulate the collapsing of intercellular walls and the failure mechanism of cellular structures in general. The new computational models and presented procedures enable determination of the optimal geometric and material parameters of cellular materials with viscous fillers for individual application demands. For example, the cellular structure stiffness and impact energy absorption through controlled deformation can be easily adapted to improve the efficiency of crash absorbers.
Keywords: mechanics, porous materials, cellular materials, impact loading, mechanical testing, fluid-structure interaction, failure mechanism
Published: 31.05.2012; Views: 1051; Downloads: 49
URL Link to full text

5.
6.
Microcrack initiation and growth in heat-risistant 15Kh2MFA steel under cyclic loading
P. Yasniy, V.B. Hlado, V. Hutsaylyuk, Tomaž Vuherer, 2005, original scientific article

Abstract: This paper presents the results of investigation of a nuclear reactor pressurevessel steel 15Kh2MFA of two strength levels under cyclic loading. Themechanism of microcrack formation on the surface and in the bulk of 15Kh2MFA steel under cyclic deformation was investigated. Analysis of the specimen surfaces has shown that microcracks are caused by cyclic sliding in grains most favourably oriented with respect to the direction of the maximum shear stresses. Transmission electron microscope investigations show that microcracks in the material inside the grains are formed mainly along the band-type dislocation structure parallel to the dislocation subboundary. During cyclic deformation, the dislocation density on the subboundaries increases, in the local areas the dislocation density becomes limiting and it reaches the plasticity limit and causes microcrack formation. The interrelation of the average length of microcracks and their surface density with the energy density of inelastic deformation has been found.
Keywords: material testing, nuclear reactor, pressure vessel, cyclic loading, cyclic deformation, dislocation structure, fatigue crack growth, TEM, fracture mechanics
Published: 01.06.2012; Views: 1048; Downloads: 19
URL Link to full text

7.
Modelling of surface crack growth under lubricated rolling-sliding contact loading
Boštjan Zafošnik, Zoran Ren, Jože Flašker, Gennady Mishuris, 2005, original scientific article

Abstract: The paper describes modelling approach to computational simulation of surface crack growth subjected to lubricated rolling-sliding contact conditions. The model considers the size and orientation of the initial crack, normal and tangential loading due to rolling-sliding contact and the influence of fluid trapped inside the crack by a hydraulic pressure mechanism. The motion of the contact sliding load is simulated with different load cases. The strain energy density (SED) and maximum tangential stress (MTS) crack propagation criteria are modified to account for the influence of internal pressure along the crack surfaces due to trapped fluid. The developed model is used to simulate surface crack growth on a gear tooth flank, which has been also experimentally tested. It is shown that the crack growth path, determined with modified crack propagation criteria, is more accurately predicted than by using the criteria in its classical form.
Keywords: fracture mechanics, numerical methods, contact loading, finite element analysis, internal pressure, maximum tangential stress, strain energy density, surface crack growth
Published: 01.06.2012; Views: 1691; Downloads: 60
URL Link to full text

8.
Assessment of the consequences of accident scenarios involving dangerous substances
Zorka Novak-Pintarič, 2007, original scientific article

Abstract: This paper highlights the major steps in the procedure for evaluating the consequences of accidents involving dangerous substances, especially during storage, loading and unloading activities. The procedure relies on identifying accident scenarios that could be encountered in particular plants, followed by modelling of these scenarios by means of available modelling systems. Finally, the resultant outcomes are identified, together with their effects on both people and property. The resources needed to perform this proceedure are discussed, in order to clarify the roles of operators, external experts and other institutions when evaluating any accident conesquences. Four examples, all relevant in industrial practice, are given in order to illustrate the procedure: the releasing of liquefied petroleum gas, flammable organic solvents, toxic chlorine, and fuel oil. The results of these studies may be used for a quick order-of-magnitude estimation of accidents consequences.
Keywords: chemical industries, dangerous substances, transportation, storage, risk, accidents, consequences estimation, Seveso II, loading, unloading, safety report
Published: 01.06.2012; Views: 1390; Downloads: 69
URL Link to full text

9.
Computer simulation of needle and take-up lever mechanism using the ADAMS software package
Darja Žunič-Lojen, Karl Gotlih, 2003, original scientific article

Abstract: A knowledge of the interactions between a sewing machinećs mechanisms and the sewing thread in the stitch formation process should help us to understand thread loadings in the sewing process. The aim of this work is to analyse the needle bar's kinematics with the thread take-up lever by using computer simulation. A cyclogram was drawn on the basis of modelling and kinematic simulation of a needle bar with a thread take-up lever, and measurements of the thread tension forces in the sewing process. This cyclogram enables analysis of the interactions between the thread and the elements of the sewing machine. The results of these simulations are curves that describe the movements at characteristic points on the mechanism. These give the possibility of pinpointing the exact positions of the mechanism's elements with respect to the main shaft rotation in the sewing machine.
Keywords: textiles, garment manufacturing, sewing, thread, stitch fomation, thread loading, cyclogram, computer simulation
Published: 01.06.2012; Views: 1359; Downloads: 17
URL Link to full text

10.
Experimental and numerical evaluation of the mechanical behavior of strongly anisotropic light-weight metallic fiber structures under static and dynamic compressive loading
Olaf Andersen, Matej Vesenjak, Thomas Fiedler, Jehring, Lovre Krstulović-Opara, original scientific article

Abstract: Rigid metallic fiber structures made from a variety of different metals and alloys have been investigated mainly with regard to their functional properties such as heat transfer, pressure drop, or filtration characteristics. With the recent advent of aluminum and magnesium-based fiber structures, the application of such structures in light-weight crash absorbers has become conceivable. The present paper therefore elucidates the mechanical behavior of rigid sintered fiber structures under quasi-static and dynamic loading. Special attention is paid to the strongly anisotropic properties observed for different directions of loading in relation to the main fiber orientation. Basically, the structures show an orthotropic behavior; however, a finite thickness of the fiber slabs results in moderate deviations from a purely orthotropic behavior. The morphology of the tested specimens is examined by computed tomography, and experimental results for different directions of loading as well as different relative densities are presented. Numerical calculations were carried out using real structural data derived from the computed tomography data. Depending on the direction of loading, the fiber structures show a distinctively different deformation behavior both experimentally and numerically. Based on these results, the prevalent modes of deformation are discussed and a first comparison with an established polymer foam and an assessment of the applicability of aluminum fiber structures in crash protection devices is attempted.
Keywords: aluminum fiber, fiber structure, orthotropy, sintering, compression, static loading, dynamic loading, energy absorption, numerical simulation
Published: 21.06.2017; Views: 326; Downloads: 188
.pdf Full text (23,30 MB)
This document has many files! More...

Search done in 0.16 sec.
Back to top
Logos of partners University of Maribor University of Ljubljana University of Primorska University of Nova Gorica