| | SLO | ENG | Piškotki in zasebnost

Večja pisava | Manjša pisava

Iskanje po katalogu digitalne knjižnice Pomoč

Iskalni niz: išči po
išči po
išči po
išči po
* po starem in bolonjskem študiju

Opcije:
  Ponastavi


1 - 10 / 10
Na začetekNa prejšnjo stran1Na naslednjo stranNa konec
1.
Kakovost digitalnega videa pri prenosu prek šumnega kanala (kodek na osnovi DCT in DWT)
Matjaž Fras, Peter Planinšič, 2008, izvirni znanstveni članek

Opis: Članek opisuje vpliv kvantizacijske stopnice na kakovost digitalnega videa pri transformacijskem kodiranju videosignala. Transformacijsko kodiranje smo izvedli enkrat s pomočjo diskretne kosinusne transformacije (DCT) in drugič z diskretno valčno transformacijo (DWT). Kodeka DCT in DWT smo implementirali v programskem paketu Matlab-Simulink. Simulirali smo vpliv kvantizacije na kakovost videosignala, prav tako pa smo proučili kakovost sprejetega digitalnega videosignala pri prenosu prek šumnega kanala. Če odmislimo pojav blkovnega efekta pri DCT-kodeku in efekt razmazanja pri DWT-kodeku, zaradi kvantizacije, se pri prenosu digitalnega (kodiranega) videa preko prenosnega kanala poslabša njegova kakovost zaradi prisotnosti šumov. Pri DCT-kodeku je šum prenosnega kanala vplival na celoten kodiran blok, pri DWT-kodeku pa le na okolico slikovnih elementov.
Ključne besede: videosignal, zgoščevanje podatkov, digitalni video, kakovost videosignala, kodek, transformacijsko kodiranje, kvantizacija, šumni kanal
Objavljeno v DKUM: 10.07.2015; Ogledov: 1367; Prenosov: 40
URL Povezava na celotno besedilo

2.
BARVNA KVANTIZACIJA IN STRESANJE
Mitja Kramberger, 2013, diplomsko delo

Opis: V diplomskem delu smo izdelali aplikacijo ki nad digitalno sliko izvede barvno kvantizacijo ter stresanje. Seznanili smo se z več načini tvorbe prirejene barvne palete in algoritmi stresanja ter jih vključili v implementacijo. Implementirali smo shranjevanje dobljenih palet v datoteke ter njihovo kasnejšo uporabo. Opisali smo vse implementirane algoritme, izmerili njihovo hitrost ter prikazali rezultate.
Ključne besede: barvna paleta, barvna kvantizacija, stresanje, digitalna slika
Objavljeno v DKUM: 18.09.2013; Ogledov: 1939; Prenosov: 142
.pdf Celotno besedilo (3,12 MB)

3.
Ocenjevanje verjetnosti neplačila za kredite prebivalstvu : nelinearen pristop s samoorganizirajočimi se mrežami
Vita Jagrič, 2011, doktorska disertacija

Opis: V disertaciji obravnavamo najstarejšo obliko finančnega tveganja, to je kreditno tveganje. Ko se kreditnemu tveganju izpostavljajo sodobne banke v močno medsebojno povezanem finančnem sistemu, se ustvarja prostor za nastanek sistemskega tveganja. Kapital banke je v tovrstnih razmerah še odgovorneje postavljen v vlogo varovala pred prenašanjem nepričakovanih izgub med bankami. Baselski sporazumi v vsaki svoji različici krepijo odvisnost zahtevanega kapitala od prevzetega tveganja. S tem nastane potreba po zelo natančni kvantifikaciji tveganj, ki jih je prevzela banka. Kvalitetna in ustrezna ocena parametrov tveganja v nekem portfelju je tako temeljni pogoj delujoče in učinkovite kapitalske regulacije. Izboljšanje klasifikacijske sposobnosti modela kreditnega tveganja, temeljnega graditelja v procesu ocene kapitalskih zahtev, bi tako lahko prispevala k izboljšanju učinkovitosti ugotavljanja kapitalskih zahtev. Disertacija predstavlja doprinos k védenju o kreditnem tveganju na področju portfelja potrošniških kreditov prebivalstvu. Za namen obvladovanja kreditnega tveganja s pomočjo klasifikacije kreditnih vlog je bilo v literaturi predstavljenih veliko kvantitativnih metod, med najpopularnejšimi so statistične metode. Razloge za priljubljenost logistične regresije, ki je v praksi najbolj uporabljana metoda za vprašanje modeliranja kreditnega tveganja na portfeljih kreditov prebivalstvu, gre iskati predvsem v poznavanju metode, preprostosti uporabe ter zadovoljivih rezultatih glede na potrebno ekspertno znanje. Kljub temu ne gre za najboljšo rešitev. Logistična regresija ima številne pomanjkljivosti, kar se pokaže tudi v tej disertaciji, kjer jo uporabimo za izdelavo primerjalnih modelov. Literatura nakazuje, da lahko boljšo klasifikacijsko sposobnost dosežejo tehnike nelinearnih metod, denimo metode podpornih vektorjev, nevronskih mrež, mehke logike itd. Osnovna teza te disertacije je, da klasifikacijski model za portfelj kreditov prebivalstvu, ki izključno ali deloma uporablja metodo samoorganizirajočih se mrež, deluje bolje kot klasični model, ki je logistična regresija. Najprej smo ocenili model z uporabo metode LVQ, ki je metoda iz družine samoorganizirajočih se mrež. Nato smo ocenili primerjalne modele. V disertaciji se posvetimo tudi vprašanju definiranja kvalitete modela, ki je ključno za možnost primerjave med dvema različnima rešitvama. Pokazano je, da je klasifikacijska točnost lahko najboljša mera kvalitete modela, saj ne posega pristransko v rezultat modela. Če pri interpretaciji rezultata modela ni potrebno vnašati nobene subjektivnosti, potem velja tudi, da dobi uporabnik enoznačen in transparenten odgovor o razvrstitvi kreditnih vlog. Ob primerjavi obeh alternativ se osnovna teza disertacije izkaže kot utemeljena, saj je model LVQ dosegel višjo klasifikacijsko točnost kot primerjalni model. Uspešnost metode pripisujemo prisotnosti nelinearnosti v podatkih. Pomen prispevka disertacije se kaže v možnosti takojšnjega prenosa ugotovitev v prakso. Uporaba metode, ki izboljšuje klasifikacijsko sposobnost modela kreditnega tveganja, predstavlja za banke možnost znižanja prihodnjih stroškov zaradi slabih kreditov ter znižanja oportunitetih stroškov zaradi zavrnitve potencialno dobrih kreditov. Uporaba izboljšanih modelov kreditnega tveganja prispeva k večji stabilnosti bančnega sistema in izboljšanem razmerju med dejanskim tveganjem v portfelju in zahtevanim kapitalom. Disertacija je predstavljena v slovenskem jeziku, s čimer utrjuje in razvija slovensko terminološko zakladnico.
Ključne besede: kreditno tveganje prebivalstva, verjetnost neplačila, samoorganizirajoče se mreže, vektorska kvantizacija
Objavljeno v DKUM: 04.06.2012; Ogledov: 4184; Prenosov: 709
.pdf Celotno besedilo (1,95 MB)

4.
5.
6.
7.
8.
9.
10.
Iskanje izvedeno v 0.18 sek.
Na vrh
Logotipi partnerjev Univerza v Mariboru Univerza v Ljubljani Univerza na Primorskem Univerza v Novi Gorici