| | SLO | ENG | Piškotki in zasebnost

Večja pisava | Manjša pisava

Iskanje po katalogu digitalne knjižnice Pomoč

Iskalni niz: išči po
išči po
išči po
išči po
* po starem in bolonjskem študiju

Opcije:
  Ponastavi


1 - 5 / 5
Na začetekNa prejšnjo stran1Na naslednjo stranNa konec
1.
Jezikovni modeli v jezikoslovni analizi
Teodor Petrič, 2023, objavljeni povzetek znanstvenega prispevka na konferenci

Ključne besede: ustno sporazumevanje, jezikovni modeli, jezikovno gradivo, klasifikacija besedilnih prvin, transkripcija
Objavljeno v DKUM: 20.05.2024; Ogledov: 123; Prenosov: 5
.pdf Celotno besedilo (3,52 MB)
Gradivo ima več datotek! Več...

2.
Uporaba nevronskih jezikovnih modelov za prepoznavanje imenskih entitet iz nestrukturiranih dokumentov : diplomsko delo
Urban Knupleš, 2021, diplomsko delo

Opis: Nestrukturirani dokumenti zajemajo informacije v oblikah in postavitvah, ki se lahko od enega primerka do drugega razlikujejo, kar lahko oteži in podraži nalogo pridobivanja informacij. Kot rešitev se je v zadnjih letih za razumevanje dokumentov na področju dokumentne inteligence pričela uporaba nevronskih jezikovnih modelov, usposobljenih na učnih množicah dokumentov. V diplomskem delu za pridobivanje informacij iz skeniranih trgovinskih računov uporabljamo prehodno učeni nevronski jezikovni model, zgrajen iz transformatorjev. Model je natančno učen z uporabo učne množice SROIE za izluščitev štirih kategorij, tj. imen in naslovov trgovin, datumov in skupnih cen. Za pridobivanje informacij smo uporabili prepoznavo imenskih entitet. Za primerjavo izvajamo poskuse s spreminjanem hiperparametrov modela. S spremembo nevronskega jezikovnega modela smo pri poskusih dosegli največjo natančnost klasifikacije: 96,7 %.
Ključne besede: Dokumentna inteligenca, obdelava naravnih jezikov, prepoznava imenskih entitet, jezikovni modeli, transformatorji
Objavljeno v DKUM: 18.10.2021; Ogledov: 860; Prenosov: 37
.pdf Celotno besedilo (1,56 MB)

3.
4.
AVTOMATSKO RAZPOZNAVANJE GOVORA ZA PREGIBNI JEZIK Z UPORABO MORFOLOŠKIH JEZIKOVNIH MODELOV S KONTEKSTNO ODVISNO STRUKTURO
Gregor Donaj, 2015, doktorska disertacija

Opis: V nalogi smo se posvetili jezikovnemu modeliranju za avtomatsko razpoznavanje govora z velikim slovarjem besed. Pri takšnem razpoznavanju je še vedno velika težava pravilnost razpoznavanja izgovorjenih besed. Ta je še posebej izrazita pri morfološko kompleksnejših jezikih, kot je slovenščina. Za delovanje sistema razpoznavanja tekočega govora potrebujemo jezikovne modele. Da lahko zgradimo primeren jezikovni model, potrebujemo ustrezno velike učne množice podatkov, ki morajo pri morfološko kompleksnejših jezikih biti še večje. Sodobni razpoznavalniki govora za slovenščino delajo več napak kot razpoznavalniki za druge jezike. Pogost problem so napačno razpoznane končnice besed. To kaže, da je smiselno razmišljati o vključevanju oblikoskladenjskih informacij v jezikovno modeliranje, če hočemo zmanjšati število napak. V doktorski nalogi predstavljamo zasnovo sistema, ki ob običajnih n-gramskih besednih jezikovnih modelih uporablja tudi modele, ki vključujejo informacije o besedni vrsti in slovničnih kategorijah prepoznanih besed. Imenujemo jih morfološki modeli. Razvili smo algoritem, ki na osnovi rezultatov perpleksnosti na razvojni množici določa najprimernejšo strukturo takšnih modelov glede na besedne vrste konteksta besede, ki jo ocenjujemo. Pravimo, da imajo modeli kontekstno odvisno strukturo. Implementirali smo jih kot faktorizirane jezikovne modele. V teh modelih se soočamo z veliko množico različnih možnih kontekstov besede in za vsak kontekst gradimo strukturo modelov ločeno. Pri tem lahko uporabimo le majhen del učne množice. Zato prihaja tudi tukaj do pomanjkanja učnih podatkov, kljub temu da imamo manjše zahteve po velikosti učne množice. Zato smo razvili pristope združevanja različnih kontekstov. Zaradi velikega števila možnih kontekstov in veliko različnih možnosti struktur modelov smo razvili tudi pristope za omejeno iskanje možnih struktur modelov na podlagi postopne gradnje njihovih struktur in sprotnega ocenjevanja. Sistem razpoznavanja je zasnovan v obliki dvoprehodnega algoritma, kjer v drugem prehodu uporabljamo v okviru doktorske disertacije razvite modele. Razvili smo tudi postopek za hitro optimizacijo uteži modelov in postopek dinamičnega uteževanja glede na kontekst besede. Uspešnost razpoznavanja z razvitimi modeli in brez njih smo testirali na slovenski govorni bazi Broadcast News.
Ključne besede: avtomatsko razpoznavanje govora z velikim slovarjem, jezikovno modeliranje, faktorizirani jezikovni modeli, perpleksnost, oblikoskladenjske oznake, dvoprehodni iskalni algoritmi
Objavljeno v DKUM: 18.05.2015; Ogledov: 2227; Prenosov: 179
.pdf Celotno besedilo (3,68 MB)

5.
Iskanje izvedeno v 4.24 sek.
Na vrh
Logotipi partnerjev Univerza v Mariboru Univerza v Ljubljani Univerza na Primorskem Univerza v Novi Gorici