| | SLO | ENG | Cookies and privacy

Bigger font | Smaller font

Search the digital library catalog Help

Query: search in
search in
search in
search in
* old and bologna study programme

Options:
  Reset


11 - 16 / 16
First pagePrevious page12Next pageLast page
11.
Experimental investigation of the stability of particulate dispersoid suspensions in aluminium and magnesium melts
Varužan Kevorkijan, 2000, original scientific article

Abstract: The rejection of Si3N4,Mg3N2, AlN and Si particles from different slurries consisting of molten aluminum and magnesium alloy with 10% of silicon or pure molten metals was experimentally investigated by measuring changes in the electrical resistance of the slurries before and after rejection occurred. In stirring experiments, only individual powder fractions which passed through a 45 µm sieve screen and remained on a 30 µm screenwere applied. The experiments showed that the rejection of Si3N4 particles from Al-10%Si and Mg-10%Si melts occurs when more than 17-18 vol.% of the ceramic phase is dispersed into the melt, while in pure Al and Mg molten metals spontaneous rejection occurs at 7-8 vol.% of the introduced ceramic phase. A similar tendency of rejection (at 16-18 vol.% of particulate in slurry) was also observed during the introduction of silicon particles into Al-10%Si and Mg-10%Si melts.
Keywords: metal matrix composites, particle reinforcement, interface, chemically activated wetting
Published in DKUM: 01.06.2012; Views: 1877; Downloads: 91
.pdf Full text (215,84 KB)
This document has many files! More...

12.
On fracture behaviour of inhomogeneous materials - a case study for elastically inhomogeneous bimaterials
Otmar Kolednik, Jožef Predan, G.X. Shan, N.K. Simha, Franz Dieter Fischer, 2005, original scientific article

Abstract: This paper presents a case study, examining the influence of a sharp bimaterial interface on the effective crack driving force in a fracture mechanics specimen. The inhomogeneity of the elastic modulus in linear elasticand non-hardening and hardening elastic-plastic bimaterials is considered. The interface is perpendicular to the crack plane. The material properties and the distance between the crack tip and the interface are systematically varied. The effect of the material inhomogeneity is captured in form of a quantity called "material inhomogeneity term",▫$C_inh$▫. This term can be evaluated either by a simple post-processing procedure, following a conventional finite element stress analysis, or by computing the J-integral along a contour around the interface, ▫$J_int$▫. The effective crack driving force,▫$J_tip$▫, can be determined as the sum of ▫$C_inh$▫ and the nominally applied far-field crack driving force, ▫$J_far$▫. The results show that ▫$C_inh$▫ can be accurately determined by both methods even in cases where ▫$J_tip$▫-values are inaccurate. When a crack approaches a stiff/compliant interface,▫$C_inh$▫ is positive and ▫$J_tip$▫ becomes larger than ▫$J-far$▫. A compliant/stiff transition leads to a negative ▫$C_inh$▫, and ▫J_tip$▫ becomes smaller than ▫$J_far$▫. The material inhomogeneity term, ▫$C_inh$▫, can have the same order of magnitude as ▫$J_far$▫. Based on the numerical results, the dependencies of ▫$C_inh$▫ on the material parameters and the geometry are derived. Simple expressions are obtained to estimate ▫$C_inh$▫.
Keywords: mechanics of structures, fracture toughness, inhomogeneous materials, J-integral, crack driving force, interface, material force
Published in DKUM: 01.06.2012; Views: 1720; Downloads: 34
URL Link to full text

13.
Intelligent interface in a flexible production environment
Igor Drstvenšek, Ivo Pahole, Miha Kovačič, Jože Balič, 2005, original scientific article

Abstract: The paper describes a universal postprocessor initially intended to translate NC code for non-standard NC controllers. By adding arithmetic modules and connecting it to the technological database (TDB) it's functionality is broaden to a wider range of production planning problems, such as quick calculations of costs, evaluation of production possibilities and disposability of tools, etc. Thus, an automation tool is gained that enables its user to participate in a virtual manufacturing market and quickly and effectively evaluate jobs offered.
Keywords: production technology, virutal manufacturing, postprocessing, NC interface, CAM
Published in DKUM: 01.06.2012; Views: 1736; Downloads: 93
URL Link to full text

14.
On the local variation of the crack driving force in a double mismatched weld
Jožef Predan, Nenad Gubeljak, Otmar Kolednik, 2007, original scientific article

Abstract: A material inhomogeneity in the direction of crack extension causes a difference between the near-tip crack driving force, Jtip, and the nominally applied far-field crack driving force, Jfar. This difference can be quantified by a material inhomogeneity term, Cinh, which is evaluated by a post-processing procedure to a conventional finite element stress analysis. The magnitude of the material inhomogeneity term is evaluated for cracks in an inhomogeneous welded joint made of a high-strength low-alloy steel. Both a crack proceeding from the under-matched (UM) to the over-matched (OM) and from the OM to the UM weld metal are treated. The effects of the inhomogeneity of the different material parameters (modulus of elasticity, yield strength, and strain hardening exponent) on Cinh and Jtip are systematically studied. The results demonstrate that the material inhomogeneity term is primarily influenced by the inhomogeneity of the yield strength. A crack growing towards an OM/UM interface experiences an accelerated crack growth rate or a pop-in, an UM/OM interface leads to a reduced crack growth rate or a crack arrest. The application of global assessment methods of the mismatch effect which are included in the Engineering Treatment Model (ETM) or in the Structural Integrity Assessment Procedures for European Industry (SINTAP) is discussed.
Keywords: crack driving force, material inhomogeneity, mismatched weld, interface, J-integral, finite element modeling
Published in DKUM: 31.05.2012; Views: 1754; Downloads: 88
URL Link to full text

15.
16.
Search done in 0.15 sec.
Back to top
Logos of partners University of Maribor University of Ljubljana University of Primorska University of Nova Gorica