| | SLO | ENG | Cookies and privacy

Bigger font | Smaller font

Search the digital library catalog Help

Query: search in
search in
search in
search in
* old and bologna study programme

Options:
  Reset


1 - 1 / 1
First pagePrevious page1Next pageLast page
1.
Automated and intelligent programming of cnc machine tools
Afrim Gjelaj, 2014, doctoral dissertation

Abstract: Nowadays, many scientists focus on increasing the level of automation, respectively flexibility in manufacturing systems. In addition, automated programming of CNC machine tools has reached a high level of machining operations. However, it is still impossible for a machine to manipulate completely in an autonomous way. Special attention in this doctoral thesis is focused on the automated programming of CNC machine tools regarding artificial intelligence. The purpose of automated programming is to improve quality and to fulfil the requirements of manufacturing industry and provide commercial solutions. This thesis also provides a description of artificial intelligence usage in order to solve optimal tool path-length and tool selection, as well as the preparation of planned technology. Firstly, the automated programming of CNC machine tools enjoys great success when applying artificial intelligence in regard to the machining processes. Choices of path length and tool selection are analysed in great detail in order to ascertain the optimal problems of tool path- length and tool selection. However, in order to achieve automated and intelligent CNC programming of machine tools, their flexibilities are of major importance. Automation today tends to improve and implement manufacturing flexibility at a strategic level. This means increasing the degree of flexibility whilst at the same time increasing the degree of automation regarding CNC machine tools. In addition to the above-mentioned investigated problems, the influences of cutting force (Fc), power cutting (Pc), tool life (T) and surface roughness (Ra) as functions of tool path- length are also analysed. Analytical and mathematical models are optimised using a multi-objective genetic algorithm (MOGA). MOGA enables optimisation by employing two or more equations simultaneously. Another problem for the automated and intelligent CNC programming of machine tools focuses on the application of Discrete Systems (DS). The discrete system in our work focuses on analysing cutting force (Fc) in regard to the turning operation.
Keywords: inteligent CNC programming, intelligent manufacturing, discrete system, automated programming, multiobjective genetic algorithm MOGA
Published: 23.01.2015; Views: 2113; Downloads: 329
.pdf Full text (1,57 MB)

Search done in 0.32 sec.
Back to top
Logos of partners University of Maribor University of Ljubljana University of Primorska University of Nova Gorica