| | SLO | ENG | Cookies and privacy

Bigger font | Smaller font

Search the digital library catalog Help

Query: search in
search in
search in
search in
* old and bologna study programme

Options:
  Reset


1 - 2 / 2
First pagePrevious page1Next pageLast page
1.
A holistic approach to cooling system selection and injection molding process optimization based on non-dominated sorting
Janez Gotlih, Miran Brezočnik, Snehashis Pal, Igor Drstvenšek, Timi Karner, Tomaž Brajlih, 2022, original scientific article

Abstract: This study applied a holistic approach to the problem of controlling the temperature of critical areas of tools using conformal cooling. The entire injection molding process is evaluated at the tool design stage using four criteria, one from each stage of the process cycle, to produce a tool with effective cooling that enables short cycle times and ensures good product quality. Tool manufacturing time and cost, as well as tool life, are considered in the optimization by introducing a novel tool-efficiency index. The multi-objective optimization is based on numerical simulations. The simulation results show that conformal cooling effectively cools the critical area of the tool and provides the shortest cycle times and the lowest warpage, but this comes with a trade-off in the tool-efficiency index. By using the tool-efficiency index with non-dominated sorting, the number of relevant simulation cases could be reduced to six, which greatly simplifies the decision regarding the choice of cooling system and process parameters. Based on the study, a tool with conformal cooling channels was made, and a coolant inlet temperature of 20 °C and a flow rate of 5 L/min for conformal and 7.5–9.5 L/min for conventional cooling channels were selected for production. The simulation results were validated by experimental measurements.
Keywords: conformal cooling, injection molding, tooling, additive manufacturing, numerical simulation, non-dominated sorting
Published in DKUM: 05.12.2024; Views: 0; Downloads: 3
.pdf Full text (6,87 MB)
This document has many files! More...

2.
Acoustic emission detection of macro-cracks on engraving tool steel inserts during the injection molding cycle using PZT sensors
Rajko Svečko, Dragan Kusić, Tomaž Kek, Andrej Sarjaš, Aleš Hančič, Janez Grum, 2013, original scientific article

Abstract: This paper presents an improved monitoring system for the failure detection ofen graving tool steel inserts during the injection molding cycle. This system uses acoustic emission PZT sensors mounted through acoustic waveguides on the engraving insert. We were thus able to clearly distinguish the defect through measured AE signals. Two engraving tool steel inserts were tested during the production of standard test specimens, each under the same processing conditions. By closely comparing the captured AE signals on both engraving inserts during the filling and packing stages, we were able to detect the presence of macro-cracks on one engraving insert. Gabor wavelet analysis was used for closer examination of the captured AE signalsć peak amplitudes during the filling and packing stages. The obtained results revealed that such a system could be used successfully as an improved tool for monitoring the integrity of an injection molding process.
Keywords: injection molding, process monitoring, acoustic emission, PZT sensors, piezoelectric effect
Published in DKUM: 22.06.2017; Views: 1770; Downloads: 386
.pdf Full text (854,94 KB)
This document has many files! More...

Search done in 0.08 sec.
Back to top
Logos of partners University of Maribor University of Ljubljana University of Primorska University of Nova Gorica