| | SLO | ENG | Cookies and privacy

Bigger font | Smaller font

Search the digital library catalog Help

Query: search in
search in
search in
search in
* old and bologna study programme


1 - 2 / 2
First pagePrevious page1Next pageLast page
A facile route to the synthesis of coated maghemite nanocomposites for hyperthermia applications
Gregor Ferk, Irena Ban, Janja Stergar, Darko Makovec, Anton Hamler, Zvonko Jagličić, Mihael Drofenik, 2012, original scientific article

Abstract: CM-dextran-covered maghemite particles for applications in magnetic hyperthermia treatments were synthesized and their physical, magnetic and morphological properties were examined. Magnetic fluids were prepared and their heating proper ies in an alternating magnetic field were studied. The results reveal that the particle size and the thickness of the carboxy-methyl-dextran (CM-dextran) coatings have a decisive influence on the heating properties: specific absorption rate (SAR). The majority of the magnetic dissipation comes from the Neel relaxation, while the Brown contribution is small. A thermal steady state at the selected temperature (42 °C) can be achieved using synthesized maghemite particles with proper particle morphology and by controlling the magnetic field intensity or the frequency.
Keywords: magnetic nanoparticles, hyperthermia, magnetic properties
Published: 10.07.2015; Views: 1108; Downloads: 59
.pdf Full text (696,12 KB)
This document has many files! More...

Synthesis of chromium-nickel nanoparticles prepared by a microemulsion method and mechanical milling
Irena Ban, Janja Stergar, Mihael Drofenik, Gregor Ferk, Darko Makovec, 2013, original scientific article

Abstract: A chemical and a physical method have been applied for the preparation of chromium-nickel alloy nanoparticles. These particles were designed to be used for controlled magnetic hyperthermia applications. Microemulsions with $Ni^{2+}$ and $Cr^{3+}$ and/or $NaBH_4$ as precursors were prepared using the isooctane/CTAB, n-butanol/$H_2O$ system. The samples of $Cr_xNi_{1-x}$ nanoparticles with the desired composition were obtained after the reduction of their salts with $NaBH_4$ and afterwards heat treated in a TGA in a $N_2$ atmosphere at various temperatures. The $Cr_xNi_{1-x}$ materials were also prepared by mechanical milling. Utilizing a ball-to-powder mass ratio of 20 : 1 and selecting the proper alloy compositions we were able to obtain nanocrystalline $Cr_xNi_{1-x}$ particles. Thermal demagnetization in the vicinity of the Curie temperature of the nanoparticles was studied using a modified TGA-SDTA method. The alloyʼs phase composition, size and morphology were determined with XRD measurements and TEManalyses.
Keywords: mechanical alloying, magnetic nanoparticles, magnetic hyperthermia, Curie point
Published: 21.12.2015; Views: 930; Downloads: 64
.pdf Full text (243,07 KB)
This document has many files! More...

Search done in 0.06 sec.
Back to top
Logos of partners University of Maribor University of Ljubljana University of Primorska University of Nova Gorica